
A Type Theory for Parameterised Spectra

Mitchell Riley

12th February 2020

Type Theory for the Working Mathematician

Some toposes:

I Set

I Sheaves on a space – algebraic geometry

I The effective topos – computability

Type Theory
M is a finitely

generated module

Set
M is an ordinary

finitely generated module

Sheaves on X
M is a sheaf of modules

of finite type

Type Theory for the Working Mathematician

Some toposes:

I Set

I Sheaves on a space – algebraic geometry

I The effective topos – computability

Type Theory
M is a finitely

generated module

Set
M is an ordinary

finitely generated module

Sheaves on X
M is a sheaf of modules

of finite type

Type Theory for the Working Mathematician

Some toposes:

I Set

I Sheaves on a space – algebraic geometry

I The effective topos – computability

Type Theory
M is a finitely

generated module

Set
M is an ordinary

finitely generated module

Sheaves on X
M is a sheaf of modules

of finite type

Type Theory for the Working Mathematician

Some toposes:

I Set

I Sheaves on a space – algebraic geometry

I The effective topos – computability

Type Theory
M is a finitely

generated module

Set
M is an ordinary

finitely generated module

Sheaves on X
M is a sheaf of modules

of finite type

Type Theory for the Working Mathematician

Some ∞-toposes:

I Spaces – homotopy theory

I ∞-sheaves – derived algebraic geometry

I Smooth spaces – synthetic differential geometry

I Parameterised spectra – stable homotopy theory

Type Theory
Freudenthal

Suspension Theorem

Spaces
Freudenthal

Suspension Theorem

∞-Sheaves on X
Freudenthal

Suspension Theorem

Type Theory for the Working Mathematician

Some ∞-toposes:

I Spaces – homotopy theory

I ∞-sheaves – derived algebraic geometry

I Smooth spaces – synthetic differential geometry

I Parameterised spectra – stable homotopy theory

Type Theory
Freudenthal

Suspension Theorem

Spaces
Freudenthal

Suspension Theorem

∞-Sheaves on X
Freudenthal

Suspension Theorem

Type Theory for the Working Mathematician

Some ∞-toposes:

I Spaces – homotopy theory

I ∞-sheaves – derived algebraic geometry

I Smooth spaces – synthetic differential geometry

I Parameterised spectra – stable homotopy theory

Type Theory
Freudenthal

Suspension Theorem

Spaces
Freudenthal

Suspension Theorem

∞-Sheaves on X
Freudenthal

Suspension Theorem

Type Theory for the Working Mathematician

Some ∞-toposes:

I Spaces – homotopy theory

I ∞-sheaves – derived algebraic geometry

I Smooth spaces – synthetic differential geometry

I Parameterised spectra – stable homotopy theory

Type Theory
Freudenthal

Suspension Theorem

Spaces
Freudenthal

Suspension Theorem

∞-Sheaves on X
Freudenthal

Suspension Theorem

Type Theory for the Working Mathematician

Some ∞-toposes:

I Spaces – homotopy theory

I ∞-sheaves – derived algebraic geometry

I Smooth spaces – synthetic differential geometry

I Parameterised spectra – stable homotopy theory

Type Theory
Freudenthal

Suspension Theorem

Spaces
Freudenthal

Suspension Theorem

∞-Sheaves on X
Freudenthal

Suspension Theorem

Overview

I Doing mathematics in type theory

I Spectra and the ∞-topos of parameterised spectra

I A type theory that interprets into parameterised spectra

Type Theories

Products

Suppose we have two arbitrary sets A and B. We can build a
function, say

f : A× B → A× (B × A)

by writing
f (x , y) := (x , (y , x))

Or:

A× B
∆×B−−−→ (A× A)× B

α−→ A× (A× B)
A×s−−→ A× (B × A)

Type theory lets us mechanically convert from the former version
to the latter.

Products

Suppose we have two arbitrary sets A and B. We can build a
function, say

f : A× B → A× (B × A)

by writing
f (x , y) := (x , (y , x))

Or:

A× B
∆×B−−−→ (A× A)× B

α−→ A× (A× B)
A×s−−→ A× (B × A)

Type theory lets us mechanically convert from the former version
to the latter.

Products

Suppose we have two arbitrary sets A and B. We can build a
function, say

f : A× B → A× (B × A)

by writing
f (x , y) := (x , (y , x))

Or:

A× B
∆×B−−−→ (A× A)× B

α−→ A× (A× B)
A×s−−→ A× (B × A)

Type theory lets us mechanically convert from the former version
to the latter.

Products

Suppose we have two arbitrary sets A and B. We can build a
function, say

f : A× B → A× (B × A)

by writing
f (x , y) := (x , (y , x))

Or:

A× B
∆×B−−−→ (A× A)× B

α−→ A× (A× B)
A×s−−→ A× (B × A)

Type theory lets us mechanically convert from the former version
to the latter.

Judgements and Rules

I If ‘A type’, then A is an object of the category

I If ‘Γ ` a : A’, where Γ is a list of assumptions

x1 : X1, x2 : X2, . . . , xn : Xn

then there is a map

a : X1 × X2 × · · · × Xn → A

The rules look like:

rule-name
J1 . . . Jn (premises)

J (conclusion)

Products

var
Γ, x : A, Γ′ ` x : A

×-form
A type B type

A× B type

×-intro
Γ ` a : A Γ ` b : B

Γ ` (a, b) : A× B

×-elim
Γ ` p : A× B Γ, x : A, y : B ` c : C

Γ ` let (x , y) = p in c : C

and some equations.

Products

var
Γ, x : A, Γ′ ` x : A

×-form
A type B type

A× B type

×-intro
Γ ` a : A Γ ` b : B

Γ ` (a, b) : A× B

×-elim
Γ ` p : A× B Γ, x : A, y : B ` c : C

Γ ` let (x , y) = p in c : C

and some equations.

Products

var
Γ, x : A, Γ′ ` x : A

×-form
A type B type

A× B type

×-intro
Γ ` a : A Γ ` b : B

Γ ` (a, b) : A× B

×-elim
Γ ` p : A× B Γ, x : A, y : B ` c : C

Γ ` let (x , y) = p in c : C

and some equations.

Products

var
Γ, x : A, Γ′ ` x : A

×-form
A type B type

A× B type

×-intro
Γ ` a : A Γ ` b : B

Γ ` (a, b) : A× B

×-elim
Γ ` p : A× B Γ, x : A, y : B ` c : C

Γ ` let (x , y) = p in c : C

and some equations.

Products

The function from before:

×-elim
×-intro

x : A, y : B ` x : A
×-intro

x : A, y : B ` y : B x : A, y : B ` x : A

x : A, y : B ` (y , x) : B × A

p : A× B, x : A, y : B ` (x , (y , x)) : A× (B × A)

p : A× B ` let (x , y) = p in (x , (y , x)) : A× (B × A)

Theorem
The rules on the previous slide present the free
category-with-products on a set of objects.

Products

The function from before:

×-elim
×-intro

x : A, y : B ` x : A
×-intro

x : A, y : B ` y : B x : A, y : B ` x : A

x : A, y : B ` (y , x) : B × A

p : A× B, x : A, y : B ` (x , (y , x)) : A× (B × A)

p : A× B ` let (x , y) = p in (x , (y , x)) : A× (B × A)

Theorem
The rules on the previous slide present the free
category-with-products on a set of objects.

Functions

For any two sets A,B, there is a set of functions A→ B.

→-form
A type B type

A→ B type

→-intro
Γ, x : A ` b : B

Γ ` λx .b : A→ B
→-elim

Γ ` f : A→ B Γ ` a : A

Γ ` f (a) : B

(and again some equations)

This kind of exponential object exists in any cartesian closed
category (sets, nice spaces, sheaves, . . .).

Dependent Type Theory

Type theory can be made more powerful by allowing types to
depend on terms.

Example

The set of days in a month depends on which month we are
talking about:

x : Month ` DayOf(x) type

Example

Each point of a differentiable manifold has a tangent space:

x : M ` TxM type

Dependent Type Theory

Type theory can be made more powerful by allowing types to
depend on terms.

Example

The set of days in a month depends on which month we are
talking about:

x : Month ` DayOf(x) type

Example

Each point of a differentiable manifold has a tangent space:

x : M ` TxM type

Dependent Type Theory

Type theory can be made more powerful by allowing types to
depend on terms.

Example

The set of days in a month depends on which month we are
talking about:

x : Month ` DayOf(x) type

Example

Each point of a differentiable manifold has a tangent space:

x : M ` TxM type

Dependent Type Theory

The product type can be generalised to dependent pairs:

Σ-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)× B(x) type

Σ-intro
Γ ` a : A Γ ` b : B(a)

Γ ` (a, b) : (x : A)× B(x)

. . .

Example

The dependent pair type (x : Month)× DayOf(x) is type of all
days in the year.

The dependent pair type (x : M)×TxM is the tangent bundle TM.

Dependent Type Theory

The product type can be generalised to dependent pairs:

Σ-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)× B(x) type

Σ-intro
Γ ` a : A Γ ` b : B(a)

Γ ` (a, b) : (x : A)× B(x)

. . .

Example

The dependent pair type (x : Month)× DayOf(x) is type of all
days in the year.

The dependent pair type (x : M)×TxM is the tangent bundle TM.

Dependent Type Theory

The product type can be generalised to dependent pairs:

Σ-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)× B(x) type

Σ-intro
Γ ` a : A Γ ` b : B(a)

Γ ` (a, b) : (x : A)× B(x)

. . .

Example

The dependent pair type (x : Month)× DayOf(x) is type of all
days in the year.

The dependent pair type (x : M)×TxM is the tangent bundle TM.

Dependent Type Theory

Similarly for dependent functions:

Π-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)→ B(x) type

Π-elim
Γ ` f : (x : A)→ B(x) Γ ` a : A

Γ ` f (a) : B(a)

. . .

Example

The dependent function type (x : Month)→ DayOf(x) is a choice
of one day from each month.

The dependent function type (x : M)→ TxM is a vector field.
(sort of, one would need to think carefully about continuity)

Dependent Type Theory

Similarly for dependent functions:

Π-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)→ B(x) type

Π-elim
Γ ` f : (x : A)→ B(x) Γ ` a : A

Γ ` f (a) : B(a)

. . .

Example

The dependent function type (x : Month)→ DayOf(x) is a choice
of one day from each month.

The dependent function type (x : M)→ TxM is a vector field.
(sort of, one would need to think carefully about continuity)

Dependent Type Theory

Similarly for dependent functions:

Π-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)→ B(x) type

Π-elim
Γ ` f : (x : A)→ B(x) Γ ` a : A

Γ ` f (a) : B(a)

. . .

Example

The dependent function type (x : Month)→ DayOf(x) is a choice
of one day from each month.

The dependent function type (x : M)→ TxM is a vector field.
(sort of, one would need to think carefully about continuity)

Homotopy Type Theory

The category of simplicial sets can handle all of the above
structure, with all constructions automatically continuous.

We can
add new types that let us talk about the spacial information:

Path-form
Γ ` a : A Γ ` a′ : A

Γ ` PathA(a, a′) type

Path-intro
Γ ` a : A

Γ ` refla : PathA(a, a)

Path-elim

Γ, x : A, x ′ : A, z : PathA(x , x ′) ` C type
Γ, x : A ` c : C [x/x ′, reflx/p]

Γ ` p : PathA(a, a′)

Γ ` ind(z .c, a, a′, p) : C [a/x , a′/x ′, p/z]

Homotopy Type Theory

The category of simplicial sets can handle all of the above
structure, with all constructions automatically continuous. We can
add new types that let us talk about the spacial information:

Path-form
Γ ` a : A Γ ` a′ : A

Γ ` PathA(a, a′) type

Path-intro
Γ ` a : A

Γ ` refla : PathA(a, a)

Path-elim

Γ, x : A, x ′ : A, z : PathA(x , x ′) ` C type
Γ, x : A ` c : C [x/x ′, reflx/p]

Γ ` p : PathA(a, a′)

Γ ` ind(z .c, a, a′, p) : C [a/x , a′/x ′, p/z]

Homotopy Type Theory

The category of simplicial sets can handle all of the above
structure, with all constructions automatically continuous. We can
add new types that let us talk about the spacial information:

Path-form
Γ ` a : A Γ ` a′ : A

Γ ` PathA(a, a′) type

Path-intro
Γ ` a : A

Γ ` refla : PathA(a, a)

Path-elim

Γ, x : A, x ′ : A, z : PathA(x , x ′) ` C type
Γ, x : A ` c : C [x/x ′, reflx/p]

Γ ` p : PathA(a, a′)

Γ ` ind(z .c, a, a′, p) : C [a/x , a′/x ′, p/z]

Homotopy Type Theory

The category of simplicial sets can handle all of the above
structure, with all constructions automatically continuous. We can
add new types that let us talk about the spacial information:

Path-form
Γ ` a : A Γ ` a′ : A

Γ ` PathA(a, a′) type

Path-intro
Γ ` a : A

Γ ` refla : PathA(a, a)

Path-elim

Γ, x : A, x ′ : A, z : PathA(x , x ′) ` C type
Γ, x : A ` c : C [x/x ′, reflx/p]

Γ ` p : PathA(a, a′)

Γ ` ind(z .c, a, a′, p) : C [a/x , a′/x ′, p/z]

Homotopy Type Theory

Definition
A type A is contractible if there is a term of the type

isContr(A) := (c : A)× ((x : A)→ PathA(c , x))

(Don’t worry, this doesn’t mean just path-connected!)

Definition
The homotopy fiber of a function f : A→ B over a point b : B is

hfibf (b) := (x : A)× PathB(f (x), b)

Definition
A function is an equivalence if the homotopy fiber over every point
is contractible:

isEquiv(f) := (b : B)→ isContr(hfibf (b))

Homotopy Type Theory

Definition
A type A is contractible if there is a term of the type

isContr(A) := (c : A)× ((x : A)→ PathA(c , x))

(Don’t worry, this doesn’t mean just path-connected!)

Definition
The homotopy fiber of a function f : A→ B over a point b : B is

hfibf (b) := (x : A)× PathB(f (x), b)

Definition
A function is an equivalence if the homotopy fiber over every point
is contractible:

isEquiv(f) := (b : B)→ isContr(hfibf (b))

Homotopy Type Theory

Definition
A type A is contractible if there is a term of the type

isContr(A) := (c : A)× ((x : A)→ PathA(c , x))

(Don’t worry, this doesn’t mean just path-connected!)

Definition
The homotopy fiber of a function f : A→ B over a point b : B is

hfibf (b) := (x : A)× PathB(f (x), b)

Definition
A function is an equivalence if the homotopy fiber over every point
is contractible:

isEquiv(f) := (b : B)→ isContr(hfibf (b))

Homotopy Type Theory

With a few more type formers (some higher inductive types,
univalent universes) the system is called Homotopy Type Theory.

Some synthetic results:

I Some homotopy groups of spheres (Shulman, Brunerie,
Licata)

I Freudenthal Suspension Theorem (Lumsdaine, Licata)

I Localisation (Chrsitensen, Opie, Rijke, Scoccola)

I Blakers–Massey Theorem (Anel, Biedermann, Finster, Joyal)

I Serre Spectral Sequence (Avigad, Awodey, Buchholtz, Rijke,
Shulman, van Doorn)

Homotopy Type Theory

With a few more type formers (some higher inductive types,
univalent universes) the system is called Homotopy Type Theory.

Some synthetic results:

I Some homotopy groups of spheres (Shulman, Brunerie,
Licata)

I Freudenthal Suspension Theorem (Lumsdaine, Licata)

I Localisation (Chrsitensen, Opie, Rijke, Scoccola)

I Blakers–Massey Theorem (Anel, Biedermann, Finster, Joyal)

I Serre Spectral Sequence (Avigad, Awodey, Buchholtz, Rijke,
Shulman, van Doorn)

Homotopy Type Theory

Theorem (Kapulkin and Lumsdaine 2012, after Voevodsky)

The Kan model structure on the category of simplicial sets admits
a model of HoTT.

Theorem (Shulman 2019)

Every ∞-topos can be presented by a model category that admits
a model of HoTT. (modulo universes being closed under HITs,
expected to be true)

Types in the theory become categorical constructions:

Γ ctx Objects Γ
Γ ` A type Fibrations A� Γ

Σ and Π types Adjoints to pullback functors C/Γ→ C/A
Path types Path space fibration

.

Homotopy Type Theory

Theorem (Kapulkin and Lumsdaine 2012, after Voevodsky)

The Kan model structure on the category of simplicial sets admits
a model of HoTT.

Theorem (Shulman 2019)

Every ∞-topos can be presented by a model category that admits
a model of HoTT. (modulo universes being closed under HITs,
expected to be true)

Types in the theory become categorical constructions:

Γ ctx Objects Γ
Γ ` A type Fibrations A� Γ

Σ and Π types Adjoints to pullback functors C/Γ→ C/A
Path types Path space fibration

.

Homotopy Type Theory

Theorem (Kapulkin and Lumsdaine 2012, after Voevodsky)

The Kan model structure on the category of simplicial sets admits
a model of HoTT.

Theorem (Shulman 2019)

Every ∞-topos can be presented by a model category that admits
a model of HoTT. (modulo universes being closed under HITs,
expected to be true)

Types in the theory become categorical constructions:

Γ ctx Objects Γ
Γ ` A type Fibrations A� Γ

Σ and Π types Adjoints to pullback functors C/Γ→ C/A
Path types Path space fibration

.

Spectra and Parameterised Spectra

Motivating Spectra

Theorem
Singular cohomology is representable: for any abelian group G and
pointed CW-complex X ,

H̃n(X ;G) ∼= [X ,K (G , n)]pt

where K (G , n) is an Eilenberg-MacLane space.

Motivating Spectra

Definition (Eilenberg–Steenrod axioms)

A reduced cohomology theory is a sequence of functors

Ẽn :

(
pointed connected CW-complexes

up to homotopy

)op

→ (abelian groups)

such that

1. Wedge sums are taken to products; and,

2. For each CW-pair (X ,A), the sequence

Ẽn(X/A)→ Ẽn(X)→ Ẽn(A)

is exact.

3. There is a natural isomorphism Ẽn(X) ∼= Ẽn+1(ΣX).

Motivating Spectra

Theorem (Brown Representability)

For any reduced cohomology theory Ẽ ∗, there is a sequence of
pointed connected CW-complexes Kn so that

Ẽn(X) ∼= [X ,Kn]pt

naturally in X .

A sequence {Kn} does not quite determine a cohomology theory
by itself: we are missing the suspension isomorphisms.

Motivating Spectra

Theorem (Brown Representability)

For any reduced cohomology theory Ẽ ∗, there is a sequence of
pointed connected CW-complexes Kn so that

Ẽn(X) ∼= [X ,Kn]pt

naturally in X .

A sequence {Kn} does not quite determine a cohomology theory
by itself: we are missing the suspension isomorphisms.

Motivating Spectra

For any X we have a natural isomorphism:

[X ,Kn]pt ∼= Ẽn(X) ∼= Ẽn+1(ΣX) ∼= [ΣX ,Kn+1]pt ∼= [X ,ΩKn+1]pt

The image of the identity map on Kn is a map αn : Kn → ΩKn+1.

Letting X vary over the spheres Sk , we see in fact αn is a weak
equivalence.

Motivating Spectra

For any X we have a natural isomorphism:

[X ,Kn]pt ∼= Ẽn(X) ∼= Ẽn+1(ΣX) ∼= [ΣX ,Kn+1]pt ∼= [X ,ΩKn+1]pt

The image of the identity map on Kn is a map αn : Kn → ΩKn+1.

Letting X vary over the spheres Sk , we see in fact αn is a weak
equivalence.

Motivating Spectra

Definition
A spectrum is a sequence of pointed connected spaces {Kn}n∈N
together with weak equivalences αn : Kn → ΩKn+1.

Example

Each abelian group yields a spectrum with Kn = K (G , n)

Example

The zero spectrum with Kn = {?}.

Example

The sphere spectrum, whose homotopy groups are the stable
homotopy groups of spheres

Motivating Spectra

Definition
A spectrum is a sequence of pointed connected spaces {Kn}n∈N
together with weak equivalences αn : Kn → ΩKn+1.

Example

Each abelian group yields a spectrum with Kn = K (G , n)

Example

The zero spectrum with Kn = {?}.

Example

The sphere spectrum, whose homotopy groups are the stable
homotopy groups of spheres

Motivating Spectra

Definition
A spectrum is a sequence of pointed connected spaces {Kn}n∈N
together with weak equivalences αn : Kn → ΩKn+1.

Example

Each abelian group yields a spectrum with Kn = K (G , n)

Example

The zero spectrum with Kn = {?}.

Example

The sphere spectrum, whose homotopy groups are the stable
homotopy groups of spheres

Motivating Spectra

Definition
A spectrum is a sequence of pointed connected spaces {Kn}n∈N
together with weak equivalences αn : Kn → ΩKn+1.

Example

Each abelian group yields a spectrum with Kn = K (G , n)

Example

The zero spectrum with Kn = {?}.

Example

The sphere spectrum, whose homotopy groups are the stable
homotopy groups of spheres

Option 1: Spectra in Type Theory

Spectra can be defined almost verbatim in HoTT:

Spectrum := (K : (N→ PtdType))

× ((n : N)→ Equiv(K (n),ΩK (n + 1)))

An important operation on spectra is the smash product. Recall
the smash product of pointed spaces:

A ∧ B := (A× B)/(A ∨ B)

Even showing this is associative in HoTT is a task! (van Doorn
2018)

Option 1: Spectra in Type Theory

Spectra can be defined almost verbatim in HoTT:

Spectrum := (K : (N→ PtdType))

× ((n : N)→ Equiv(K (n),ΩK (n + 1)))

An important operation on spectra is the smash product. Recall
the smash product of pointed spaces:

A ∧ B := (A× B)/(A ∨ B)

Even showing this is associative in HoTT is a task! (van Doorn
2018)

Option 1: Spectra in Type Theory

Idea: Instead of rebuilding spectra inside type theory, model type
theory in a category where they already exist.

The category of spectra is lousy for modelling type theory.

I Yes: dependent pair type, path type

I No: everything else

Option 1: Spectra in Type Theory

Idea: Instead of rebuilding spectra inside type theory, model type
theory in a category where they already exist.

The category of spectra is lousy for modelling type theory.

I Yes: dependent pair type, path type

I No: everything else

Option 2: A Model in Parameterised Spectra

“Definition”
A parameterised spectrum is a bundle of spectra over a space.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Option 2: A Model in Parameterised Spectra

“Definition”
A parameterised spectrum is a bundle of spectra over a space.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Option 2: A Model in Parameterised Spectra

“Definition”
A parameterised spectrum is a bundle of spectra over a space.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Option 2: A Model in Parameterised Spectra

“Definition”
A parameterised spectrum is a bundle of spectra over a space.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Option 2: A Model in Parameterised Spectra

“Definition”
A parameterised spectrum is a bundle of spectra over a space.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

A Type Theory for Parameterised Spectra

Stable Homotopy Type Theory?

We now think of our types as spaces + extra spectral information
over every point.

Homotopy
Type Theory

PSpecSpaces

We need to figure out how to add new type formers that give
access to that structure.

Stable Homotopy Type Theory?

We now think of our types as spaces + extra spectral information
over every point.

Homotopy
Type Theory

PSpec

Spaces

We need to figure out how to add new type formers that give
access to that structure.

Stable Homotopy Type Theory?

We now think of our types as spaces + extra spectral information
over every point.

Homotopy
Type Theory

PSpecSpaces

We need to figure out how to add new type formers that give
access to that structure.

Stable Homotopy Type Theory?

We now think of our types as spaces + extra spectral information
over every point.

Homotopy
Type Theory

PSpecSpaces

We need to figure out how to add new type formers that give
access to that structure.

Underlying Space

For every type A there should be a type \A that deletes the
spectral information.

var-zero
Γ, x : A, Γ′ ` x0 : A0

\-form
Γ0 ` A type

Γ ` \A type

\-intro
Γ0 ` a : A

Γ ` a\ : \A
\-elim

Γ ` a : \A

Γ ` a\ : A

Underlying Space

For every type A there should be a type \A that deletes the
spectral information.

var-zero
Γ, x : A, Γ′ ` x0 : A0

\-form
Γ0 ` A type

Γ ` \A type

\-intro
Γ0 ` a : A

Γ ` a\ : \A
\-elim

Γ ` a : \A

Γ ` a\ : A

Underlying Space

For every type A there should be a type \A that deletes the
spectral information.

var-zero
Γ, x : A, Γ′ ` x0 : A0

\-form
Γ0 ` A type

Γ ` \A type

\-intro
Γ0 ` a : A

Γ ` a\ : \A
\-elim

Γ ` a : \A

Γ ` a\ : A

Smash Product

For two types A and B, there should be a type A⊗ B that
corresponding to the ‘external smash product’.

⊗

⊗-intro
Γ0,Ω,Ω′0, Γ′0 ` a : A Γ0,Ω0,Ω′, Γ′0 ` b : B

Γ, (Ω)(Ω′), Γ′ ` a⊗ b : A⊗ B

⊗-elim

Γ, z : A⊗ B ` C type
Γ, (x : A)(y : B) ` c : C [x ⊗ y/z]

Γ ` s : A⊗ B

Γ ` let x ⊗ y = s in c : C [s/z]

Smash Product

For two types A and B, there should be a type A⊗ B that
corresponding to the ‘external smash product’.

⊗

⊗-intro
Γ0,Ω,Ω′0, Γ′0 ` a : A Γ0,Ω0,Ω′, Γ′0 ` b : B

Γ, (Ω)(Ω′), Γ′ ` a⊗ b : A⊗ B

⊗-elim

Γ, z : A⊗ B ` C type
Γ, (x : A)(y : B) ` c : C [x ⊗ y/z]

Γ ` s : A⊗ B

Γ ` let x ⊗ y = s in c : C [s/z]

Smash Product

For two types A and B, there should be a type A⊗ B that
corresponding to the ‘external smash product’.

⊗

⊗-intro
Γ0,Ω,Ω′0, Γ′0 ` a : A Γ0,Ω0,Ω′, Γ′0 ` b : B

Γ, (Ω)(Ω′), Γ′ ` a⊗ b : A⊗ B

⊗-elim

Γ, z : A⊗ B ` C type
Γ, (x : A)(y : B) ` c : C [x ⊗ y/z]

Γ ` s : A⊗ B

Γ ` let x ⊗ y = s in c : C [s/z]

More Formers

I The sphere spectrum S: the monoidal unit for ⊗

I Hom types A(B: right adjoint to −⊗ A

More Formers

I The sphere spectrum S: the monoidal unit for ⊗
I Hom types A(B: right adjoint to −⊗ A

Progress

What’s done:

I Judgemental structure

I Type formers and their interactions with the context

Combining dependent types and ‘linear’ features is difficult! And
interesting!

What’s left:

I Check all the admissible rules work

I Actually use it!

I Describe intended semantics more precisely

I Code up a type-checker?

Progress

What’s done:

I Judgemental structure

I Type formers and their interactions with the context

Combining dependent types and ‘linear’ features is difficult! And
interesting!

What’s left:

I Check all the admissible rules work

I Actually use it!

I Describe intended semantics more precisely

I Code up a type-checker?

References I

Joyal, André (2008). Notes on logoi. url:
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf.

Kapulkin, Chris and Peter LeFanu Lumsdaine (2012). “The simplicial
model of univalent foundations (after Voevodsky)”. In: arXiv preprint
arXiv:1211.2851.

Shulman, Michael (2019). “All (∞, 1)-toposes have strict univalent
universes”. In: arXiv preprint arXiv:1904.07004.

van Doorn, Floris (2018). “On the formalization of higher inductive types
and synthetic homotopy theory”. In: arXiv preprint arXiv:1808.10690.

http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf

	Type Theories
	Spectra and Parameterised Spectra
	A Type Theory for Parameterised Spectra
	References

