
Using Linear Homotopy Type Theory Informally

Mitchell Riley
Dan Licata

Wesleyan University

Following jww. Eric Finster
University of Cambridge

16th October 2021

1



Intended Models

Space-parameterised families of Spectra

Or more generally:

X -parameterised families of C

where

▶ X is an ∞-topos,

▶ C is a symmetric monoidal closed ∞-category with a zero
object.

(C for which X -parameterised families form an ∞-topos are called
an ‘∞-locus’, Hoyois 2019)

Every object has a nonlinear aspect and a linear aspect.

2



Intended Models

♮ :≡

⊗ :≡

⊗

▶ ♮: Extracts the nonlinear aspect of a type,
▶ jww. Eric Finster, [arXiv: 2102.04099]

▶ ⊗: ‘Fibrewise’ tensor product,
▶ S: Unit of ⊗,
▶ ⊸: Right adjoint to ⊗.

3

2102.04099


Eg. (Co)homology

The homology and cohomology of X with coefficients in E can be
defined by

En(X ) :≡ πs
n(Σ

∞(X )⊗ E )

En(X ) :≡ πs
n(Σ

∞(X ) ⊸ E )

where

πs
n(E ) :≡ ♮(S→ E )

Σ∞(X ) :≡ X ∧ S

4



New Type Formers

HoTT does not have type formers for these. So let’s add them.
We want the output of the type formers to be ordinary types.

Cannot use an indexed type theory (Vákár 2014; Krishnaswami,
Pradic, and Benton 2015; Isaev 2021), or quantitative type
theory (McBride 2016; Atkey 2018; Moon, Eades III, and Orchard
2021; Fu, Kishida, and Selinger 2020)

5



♮

6



Marked Variable Uses

An extra variable rule, meaning only the non-linear aspect of an
assumption is used.

▶ For any assumption x : A there is a term x : markFV(A)
where markFV(a) marks all uses of free variables in a.

markFV(x) ≡ x

markFV(λy .y + x) ≡ λy .y + x

▶ Substitution into x is defined by x [a/x ] :≡ markFV(a).

Definition
A term a is dull if markFV(a) ≡ a

So a only uses the non-linear aspect of the context.

Write the markFV(a) operation also as a, so x [a/x ] :≡ a.

7



Rules for ♮

▶ Formation: For any dull A : U , there is a type ♮A : U .
▶ Introduction: For any dull term a : A, there is a term a♮ : ♮A.

▶ Elimination: For any term n : ♮A, there is a term n♮ : A.

▶ Computation: a♮♮ ≡ a for any a : A.

▶ Uniqueness: n ≡ n♮
♮ for any n : ♮A.

(In the formalism this is described using a ‘modal’ context
extension rather than a dullness side condition.)

8



⊗

9



The Symmetry Proof We Want

Proposition

sym : A⊗ B ≃ B ⊗ A

Proof.
To define sym : A⊗B → B ⊗A, suppose we have p : A⊗B. Then
⊗-induction allows us to assume p ≡ x ⊗ y , and we have y ⊗ x .

sym :≡ λp.let x ⊗ y = p in y ⊗ x

Then to prove
∏

(p:A⊗B) sym(sym(p)) = p, use ⊗-induction again:
the goal reduces to x ⊗ y = x ⊗ y for which we have reflexivity.

inv :≡ λp.let x ⊗ y = p in reflx⊗y

10



Colourful Variables

We need to prevent terms like λx .x ⊗ x : A → A⊗ A, so variable
use needs to be restricted somehow.

▶ Every variable x has a colour c.

▶ The relationships between colours are collected in a palette.

Palettes Φ are constructed by

1 Φ1 ⊗ Φ2 Φ1,Φ2 c c ≺ Φ

Typical palettes:

p ≺ r⊗ b w ≺ (p ≺ r⊗ b)⊗ y p ≺ (r⊗ b, r′ ⊗ b′)

(Similar to ‘bunched’ type theory P. W. O’Hearn and Pym 1999;
P. O’Hearn 2003)

11



Using Colourful Variables

We need to keep track of the current ‘top colour’. Suppose
p ≺ r⊗ b, and we have variables x r : A, y b : B, zp : C .

▶ To be well-formed, a term must ‘be purple’.

▶ Only z : C is a well-formed term using the normal variable
rule.

▶ Each of x : A, y : B, z : C is well-formed: any variable can be
used marked.

Ordinary type formers bind variables with the current top colour:∑
(x :A)B(x)

∏
(x :A)B(x) (λx .b)

ind+(z .C , x .c1, y .c2, p) ind=(x .x
′.p.C , x .c , p)

12



Rules for ⊗
Let p be the top colour.

▶ Formation: If A : U and B : U , then A⊗ B : U .
▶ Introduction: For any* p ≺ r⊗ b and terms a : A with colour r

and b : B(a) with colour b, there is a term

a ⊗r b b : ⃝∑ (x :A)B(x)

▶ Elimination: Any term p : ⃝∑ (x :A) B(x) may be assumed to be

of the form x ⊗r b y for some variables x r : A, y b : B(x) with
p ≺ r⊗ b in a term c : C [x ⊗r b y/z ].

(let x ⊗r b y = p in c) : C [p/z ]

▶ Computation: If the term really is of the form a ⊗
r′ b′

b, then

(let x ⊗r b y = a ⊗r′ b′ b in c) ≡ c[r′/r⊗ b′/b | a/x , b/x ]

13



Eg: Symmetry

Proposition

There is a function sym : A⊗ B → B ⊗ A

Proof.
Suppose have p : A⊗ B. Then ⊗-induction on p gives x r : A and
y b : B, where p ≺ r⊗ b.
We need to form a purple term of B ⊗ A, so ‘split p into b and r’.
Then we can form y ⊗b r x : B ⊗ A.

sym :≡ λp.let x ⊗r b y = p in y ⊗b r x

But we don’t have p ≺ b⊗ r literally, we need to allow for some
symmetric monoidal structural rules.

14



Palette Splits

Need a more general judgement for when the palette linearly splits
into two pieces: p ≺ r⃗ ⊗̃ b⃗

Symmetry: In palette p ≺ r⊗ b, we have a split

p ≺ b ⊗̃ r

Associativity: In palette w ≺ (p ≺ r⊗ b)⊗ y, we have a split

w ≺ r ⊗̃ (b⊗ y)

Cartesian weakening: In palette p ≺ (r⊗ b, r′ ⊗ b′), we have a split

p ≺ r′ ⊗̃ b′

15



Rules for ⊗
Let p be the top colour.

▶ Formation: If A : U and B : A → U , then ⃝∑ (x :A) B(x) : U .
▶ Introduction: For any palette split p ≺ r⃗ ⊗̃ b⃗ and terms a : A

with colour r and b : B(a) with colour b, there is a term

a ⊗
r⃗ b⃗

b : ⃝∑ (x :A)B(x)

▶ Elimination: Any term p : ⃝∑ (x :A) B(x) may be assumed to be

of the form x ⊗r b y for some variables x r : A, y b : B(x) with
p ≺ r⊗ b in a term c : C [x ⊗r b y/z ].

(let x ⊗r b y = p in c) : C [p/z ]

▶ Computation: If the term really is of the form a ⊗
r⃗′ b⃗′

b, then

(let x ⊗r b y = a ⊗
r⃗′ b⃗′

b in c) ≡ c[r⃗′/r⊗ b⃗′/b | a/x , b/x ]

16



Eg. Associativity

Proposition

assoc : A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C

Proof.
Use (derivable) triple inductions to define

assoc :≡ λp.let (a ⊗r b b) ⊗p y c = p in a ⊗r b⊗y (b ⊗b y c)

associnv :≡ λq.let a ⊗r g (b ⊗b y c) = q in (a ⊗r b b) ⊗r⊗b y c

Then to prove
∏

(p:(A⊗B)⊗C) associnv(assoc(p)) =(A⊗B)⊗C p, use
induction again:

linv :≡ λp.let (a ⊗r b b) ⊗p y c = p in refl(a ⊗r bb) ⊗p yc

and similarly to show it is a right inverse.

17



Eg. Associativity

Proposition

assoc : A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C

Proof.
Use (derivable) triple inductions to define

assoc :≡ λp.let (a⊗ b)⊗ c = p in a⊗ (b ⊗ c)

associnv :≡ λq.let a⊗ (b ⊗ c) = q in (a⊗ b)⊗ c

Then to prove
∏

(p:(A⊗B)⊗C) associnv(assoc(p)) =(A⊗B)⊗C p, use
induction again:

linv :≡ λp.let (a⊗ b)⊗ c = p in refl(a⊗b)⊗c

and similarly to show it is a right inverse.

18



Eg. Associativity

Like Σ,

assoc :
(∑

(x :A)

∑
(y :B(x))C (x)(y)

)
≃
(∑

(v :
∑

(x :A) B(x))C (pr1v)(pr2v)
)

There is a dependent verison:

assoc :
(
⃝∑ (x :A)⃝

∑
(y :B(x))C (x)(y)

)
≃
(
⃝∑

(v :⃝∑ (x :A) B(x))
let x ⊗ y = v inC (x)(y)

)

19



Eg: Uniqueness principle for ⊗

Proposition

If C : ⃝∑ (x :A) B(x) → U is a type family and
f :

∏
(p:⃝∑ (x :A) B(x))

C (p), then for any p : A⊗ B we have

(let x ⊗ y = p in f (x ⊗ y)) = f (p)

Proof.
By ⊗-induction we may assume p ≡ x ′ ⊗ y ′. Our goal is now

(let x ⊗ y = x ′ ⊗ y ′ in f (x ⊗ y)) = f (x ′ ⊗ y ′)

Which by computation reduces to f (x ′ ⊗ y ′) = f (x ′ ⊗ y ′), for
which we have reflexivity.

(Cannot state this in indexed type or quantitative type theories)

20



⊸

21



Hom

Γ× A ⊢ B

Γ ⊢ A → B
==========

Γ⊗ A ⊢ B

Γ ⊢ A ⊸ B
==========

22



Hom

Γ× (x : A) ⊢ B

Γ ⊢ λx .b :
∏

(x :A)B
=================

Γ⊗ (y : A) ⊢ B

Γ ⊢ ∂y .b : ⃝∏ (y :A)B
==================

23



Hom

p | Γ, xp : A ⊢ b : B

p | Γ ⊢ λx .b :
∏

(x :A)B
====================

w ≺ p⊗ y | Γ, y y : A ⊢ b : B

p | Γ ⊢ ∂y .b : ⃝∏ (y y:A) B
==========================

24



Rules for ⊸

Let p be the top colour.

▶ Formation/Introduction: If b : B is a term using a fresh
assumption xy : A in palette w ≺ p⊗ y, for fresh colours w
and y, then there is a (purple) term

∂wxy.b : ⃝∏ (xy:A)B

▶ Elimination: For any split p ≺ r⃗ ⊗̃ b⃗ and terms h : ⃝∏ (xy:A) B

with colour r⃗ and a : A with colour b⃗, there is a term

h⃗r⟨a⟩⃗b : B[(⃗b/y | a/x)]

▶ Computation: (∂oxy.b)⃗r⟨a⟩⃗b ≡ b[(⃗b/y | a/x)]
▶ Uniqueness: h ≡ ∂wxy.(hp⟨x⟩y)

25



Eg. Currying

Let y be the top colour.

Proposition

There is a map ((A⊗ B) ⊸ C ) → (A ⊸ (B ⊸ C )).

Proof.
Suppose hy : (A⊗ B) ⊸ C . Using ∂-abstraction binds x r : A, and
our goal is B ⊸ C in o ≺ y⊗ r.

Another ∂-abstraction binds y b : B, and our goal is C in
w ≺ (o ≺ y⊗ r)⊗ b.

Pairing x and y gives a term x ⊗r b y : A⊗ B of colour r⊗ b.
Applying h to this gives hy⟨x ⊗r b y⟩r⊗b : C .

λh.∂ox r.∂wy b.hy⟨x ⊗r b y⟩r⊗b or simply λh.∂x .∂y .h⟨x ⊗ y⟩

26



Eg. Homs vs Functions

When can we build a non-trivial map? (Here meaning a map that
does not use any variable marked.)

Given
f : A → B

A → B A ⊸ B A → B × B A ⊸ B × B A → B ⊗ B A ⊸ B ⊗ B

Given
h : A ⊸ B

A → B A ⊸ B A → B × B A ⊸ B × B A → B ⊗ B A ⊸ B ⊗ B

Given
o : 1

A → A A ⊸ A A → 1 A ⊸ 1 A → S A ⊸ S

Given
s : S

A → A A ⊸ A A → 1 A ⊸ 1 A → S A ⊸ S

27



Hom Extensionality

28



Hom Extensionality

Let us write the top colour as r. For f , g : ⃝∏ (x :A) B⟨x⟩,

homapp(f , g) : (f = g) → ⃝∏ (x :A)f ⟨x⟩ = g⟨x⟩

is given by path induction:

homapp(f , f )(reflf ) :≡ ∂x .reflf ⟨x⟩

Axiom Homext
For any f , g : ⃝∏ (x :A) B⟨x⟩, the function homapp(f , g) is an
equivalence.

Theorem
Univalence implies hom extensionality.

29



Strategy

Almost the same proof as for functions! Following the HoTT book:

1. ‘Naive’ homext (there is a map back).

2. Weak homext (homs into contractible families are contractible).

3. Homext.

30



Quick Lemma

Definition
The postcomposition of h : A → B with f : B → B ′ is defined by

postcomp(f , h) : A → B ′

postcomp(f , h) :≡ λx .f (h(x))

Lemma
Any equivalence e : B ≃ B ′ induces an equivalence
(A → B) ≃ (A → B ′) by postcomposition with e.

Proof.
e is the image of some p : B = B ′ under univalence. By path
induction, assume p ≡ reflB , so e ≡ idB . Then postcomposition
with e is the identity, and so is an equivalence.

31



Quick Lemma

Definition
The postcomposition of h : A ⊸ B with f : B → B ′ is defined by

postcomp(f , h) : A ⊸ B ′

postcomp(f , h) :≡ ∂x .f (h⟨x⟩)

Lemma
Any equivalence e : B ≃ B ′ induces an equivalence
(A ⊸ B) ≃ (A ⊸ B ′) by postcomposition with e.

Proof.
e is the image of some p : B = B ′ under univalence. By path
induction, assume p ≡ reflB , so e ≡ idB . Then postcomposition
with e is the identity, and so is an equivalence.

32



Naive Funext

Proposition

For f , g : A → B there is a map
(∏

(x :A) f (x) = g(x)
)
→ (f = g).

Proof.
Given h :

∏
(x :A) f (x) = g(x), define

d , e : A →
(∑

(y :B)

∑
(y ′:B)y = y ′

)
d :≡ λx .(f (x), f (x), reflf (x))

e :≡ λx .(f (x), g(x), h(x))

Then d = e because they become equal under the equivalence

postcomp(pr1,−) :
[
A →

(∑
(y :B)

∑
(y ′:B)y = y ′

)]
→ [A → B]

And ap of postcomp(pr2,−) on the path d = e gives a path
λx .f (x) = λx .g(x), which is f = g .

33



Naive Homext

Proposition

For f , g : A ⊸ B there is a map
(
⃝∏ (x :A) f ⟨x⟩ = g⟨x⟩

)
→ (f = g).

Proof.
Given h : ⃝∏ (x :A) f ⟨x⟩ = g⟨x⟩, define

d , e : A ⊸
(∑

(y :B)

∑
(y ′:B)y = y ′

)
d :≡ ∂x .(f ⟨x⟩, f ⟨x⟩, reflf ⟨x⟩)
e :≡ ∂x .(f ⟨x⟩, g⟨x⟩, h⟨x⟩)

Then d = e because they become equal under the equivalence

postcomp(pr1,−) :
[
A ⊸

(∑
(y :B)

∑
(y ′:B)y = y ′

)]
→ [A ⊸ B]

And ap of postcomp(pr2,−) on the path d = e gives a path,
∂x .f ⟨x⟩ = ∂x .g⟨x⟩, which is f = g .

34



Weak Funext

Proposition∏
(x :A) isContr(B(x)) → isContr

(∏
(x :A) B(x)

)
Proof.
Suppose w :

∏
(x :A) isContr(B(x)). From w and univalence we can

build a term of
∏

(x :A)(B(x) = 1).
Then naive funext gives p : B = (λx .1), and we can form

ap∏
(x :A) −(x)(p) :

(∏
(x :A)B(x)

)
= (A → 1)

Now A → 1 is contractible because for any f : A → 1 we have
f ≡ λx .f (x) ≡ λx .⋆. Transport isContr(A → 1) along the above
path.

35



Weak Homext

Proposition

⃝∏ (x :A) isContr(B⟨x⟩) → isContr
(
⃝∏ (x :A) B⟨x⟩

)
Proof.
Suppose w : ⃝∏ (x :A) isContr(B⟨x⟩). From w and univalence we can
build a term of ⃝∏ (x :A)(B⟨x⟩ = 1).
Then naive homext gives p : B = (∂x .1), and we can form

ap⃝∏ (x :A) −⟨x⟩(p) :
(
⃝∏ (x :A)B⟨x⟩

)
= (A ⊸ 1)

Now A ⊸ 1 is contractible because for any f : A ⊸ 1 we have
f ≡ ∂x .f ⟨x⟩ ≡ ∂x .⋆. Transport isContr(A ⊸ 1) along the above
path.

36



→ Preserves Σ

Proposition

A → (B × C ) ≃ (A → B)× (A → C )

Or with maximal dependency:∏
(x :A)

∑
(y :B(x))C (x)(y) ≃

∑
(g :

∏
(x :A) B(x))

∏
(x :A)C (x)(g(x))

Proof.
Define maps back and forth:

f 7→ (λx .pr1(f (x)), λx .pr2(f (x)))

(g , h) 7→ λx .(g(x), h(x))

Both round-trips are definitionally the identity.

37



⊸ Preserves Σ

Proposition

A ⊸ (B × C ) ≃ (A ⊸ B)× (A ⊸ C )

Or with maximal dependency:

⃝∏ (x :A)

∑
(y :B⟨x⟩)C ⟨x⟩(y) ≃

∑
(g :⃝∏ (x :A) B⟨x⟩)⃝

∏
(x :A)C ⟨x⟩(g⟨x⟩)

Proof.
Define maps back and forth:

f 7→ (∂x .pr1(f ⟨x⟩), ∂x .pr2(f ⟨x⟩))
(g , h) 7→ ∂x .(g⟨x⟩, h⟨x⟩)

Both round-trips are definitionally the identity.

38



Homext

Theorem
Function extensionality holds.

Proof.
Fixing an f and working fibrewise, we need(∑

(g :
∏

(x :A) B(x))(f = g)
)
→

(∑
(g :

∏
(x :A) B(x))

∏
(x :A)f (x) = g(x)

)
given by λ(g , p).(g , happly(f , g)(p)) is an equivalence. The LHS is
contractible, so we just need the RHS also contractible. By the
last Proposition, the RHS is equivalent to∏

(x :A)

∑
(y :B(x))f (x) = y

which is contractible by weak homext.

39



Funext

Theorem
Hom extensionality holds.

Proof.
Fixing an f and working fibrewise, we need(∑

(g :⃝∏ (x :A) B⟨x⟩)(f = g)
)
→

(∑
(g :⃝∏ (x :A) B⟨x⟩)⃝

∏
(x :A)f ⟨x⟩ = g⟨x⟩

)
given by λ(g , p).(g , homapp(f , g)(p)) is an equivalence. The LHS
is contractible, so we just need the RHS also contractible. By the
last Proposition, the RHS is equivalent to

⃝∏ (x :A)

∑
(y :B⟨x⟩)f ⟨x⟩ = y

which is contractible by weak funext.

40



Summary Future

▶ Extension of HoTT with ♮, ⊗, ⊸ and S

▶ Compatible with existing synthetic results

▶ Can show: a map of spaces X → Y gives a ‘six functor
formalism’ between X → Spec and Y → Spec

▶ What can we prove about (co)homology synthetically?

▶ Can generalise to let C be not pointed? (Probably!)

41



References I

Atkey, Robert (2018). “Syntax and semantics of quantitative type
theory”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS ’18. Oxford, United Kingdom:
Association for Computing Machinery, pp. 56–65. isbn:
978-1-4503-5583-4. doi: 10.1145/3209108.3209189.

Fu, Peng, Kohei Kishida, and Peter Selinger (2020). “Linear Dependent
Type Theory for Quantum Programming Languages: Extended
Abstract”. In: Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’20. Saarbrücken,
Germany: Association for Computing Machinery, pp. 440–453. isbn:
978-1-4503-7104-9. doi: 10.1145/3373718.3394765.

Hoyois, Marc (2019). “Topoi of parametrized objects”. In: Theory and
Applications of Categories 34, Paper No. 9, 243–248. url:
http://www.tac.mta.ca/tac/volumes/34/9/34-09abs.html.

Isaev, Valery (2021). “Indexed type theories”. In: Mathematical
Structures in Computer Science 31.1, pp. 3–63. doi:
10.1017/S0960129520000092.

42

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3373718.3394765
http://www.tac.mta.ca/tac/volumes/34/9/34-09abs.html
https://doi.org/10.1017/S0960129520000092


References II

Krishnaswami, Neelakantan R., Pierre Pradic, and Nick Benton (2015).
“Integrating Linear and Dependent Types”. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’15. Mumbai, India: Association for
Computing Machinery, pp. 17–30. isbn: 978-1-4503-3300-9. doi:
10.1145/2676726.2676969.

McBride, Conor (2016). “I got plenty o’ nuttin’”. In: A list of successes
that can change the world. Vol. 9600. Lecture Notes in Computer
Science. Springer International Publishing, pp. 207–233. doi:
10.1007/978-3-319-30936-1_12.

Moon, Benjamin, Harley Eades III, and Dominic Orchard (2021). “Graded
Modal Dependent Type Theory”. In: Programming Languages and
Systems. Ed. by Nobuko Yoshida. Cham: Springer International
Publishing, pp. 462–490. doi: 10.1007/978-3-030-72019-3_17.

O’Hearn, Peter (2003). “On bunched typing”. In: Journal of Functional
Programming 13.4, pp. 747–796. issn: 0956-7968. doi:
10.1017/S0956796802004495.

43

https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1017/S0956796802004495


References III

O’Hearn, Peter W. and David J. Pym (1999). “The logic of bunched
implications”. In: Bulletin of Symbolic Logic 5.2, pp. 215–244. issn:
1079-8986. doi: 10.2307/421090.

Riley, Mitchell, Eric Finster, and Daniel R. Licata (2021). Synthetic
Spectra via a Monadic and Comonadic Modality. arXiv: 2102.04099.

Vákár, Matthjis (2014). Syntax and Semantics of Linear Dependent
Types. arXiv: 1405.0033 [cs.AT].

44

https://doi.org/10.2307/421090
https://arxiv.org/abs/2102.04099
https://arxiv.org/abs/1405.0033

	
	
	
	Hom Extensionality
	References

