Using Linear Homotopy Type Theory Informally

Mitchell Riley
Dan Licata
Wesleyan University

Following jww. Eric Finster
University of Cambridge
$16^{\text {th }}$ October 2021

Intended Models

Space-parameterised families of Spectra

Or more generally:

$$
\mathcal{X} \text {-parameterised families of } \mathcal{C}
$$

where

- \mathcal{X} is an ∞-topos,
- \mathcal{C} is a symmetric monoidal closed ∞-category with a zero object.
(\mathcal{C} for which \mathcal{X}-parameterised families form an ∞-topos are called an ' ∞-locus', Hoyois 2019)

Every object has a nonlinear aspect and a linear aspect.

Intended Models

h: Extracts the nonlinear aspect of a type,
jww. Eric Finster, [arXiv: 2102.04099]
\otimes : 'Fibrewise' tensor product,

- \mathbb{S} : Unit of \otimes,
$-\bigcirc$: Right adjoint to \otimes.

Eg. (Co)homology

The homology and cohomology of X with coefficients in E can be defined by

$$
\begin{aligned}
E_{n}(X) & : \equiv \pi_{n}^{s}\left(\Sigma^{\infty}(X) \otimes E\right) \\
E^{n}(X) & : \equiv \pi_{n}^{s}\left(\Sigma^{\infty}(X) \multimap E\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\pi_{n}^{s}(E) & : \equiv \mathfrak{h}(\mathbb{S} \rightarrow E) \\
\Sigma^{\infty}(X) & : \equiv X \wedge \mathbb{S}
\end{aligned}
$$

New Type Formers

HoTT does not have type formers for these. So let's add them. We want the output of the type formers to be ordinary types.

Cannot use an indexed type theory (Vákár 2014; Krishnaswami, Pradic, and Benton 2015; Isaev 2021), or quantitative type theory (McBride 2016; Atkey 2018; Moon, Eades III, and Orchard 2021; Fu, Kishida, and Selinger 2020)

■

Marked Variable Uses

An extra variable rule, meaning only the non-linear aspect of an assumption is used.

- For any assumption $x: A$ there is a term $\underline{x}: \operatorname{markFV}(A)$ where markFV(a) marks all uses of free variables in a.

$$
\begin{aligned}
\operatorname{markFV}(x) & \equiv \underline{x} \\
\operatorname{markFV}(\lambda y \cdot y+x) & \equiv \lambda y \cdot y+\underline{x}
\end{aligned}
$$

- Substitution into \underline{x} is defined by $\underline{x}[a / x]: \equiv \operatorname{markFV}(a)$.

Definition

A term a is dull if markFV $(a) \equiv a$
So a only uses the non-linear aspect of the context.
Write the markFV(a) operation also as \underline{a}, so $\underline{x}[a / x]: \equiv \underline{a}$.

Rules for \square

- Formation: For any dull $\underline{A}: \mathcal{U}$, there is a type $\underline{\natural} \underline{A}: \mathcal{U}$.
- Introduction: For any dull term $\underline{a}: \underline{A}$, there is a term $\underline{a}^{\natural}: \underline{\natural} \underline{A}$.
- Elimination: For any term $n: দ \underline{A}$, there is a term $n_{\natural}: \underline{A}$.
- Computation: $\underline{a}^{\natural} \underline{\square} \equiv \underline{a}$ for any $\underline{a}: \underline{A}$.
- Uniqueness: $n \equiv \underline{n}_{\natural}{ }^{\natural}$ for any $n: \natural \underline{A}$.
(In the formalism this is described using a 'modal' context extension rather than a dullness side condition.)

\otimes

The Symmetry Proof We Want

Proposition
sym : $A \otimes B \simeq B \otimes A$
Proof.
To define sym : $A \otimes B \rightarrow B \otimes A$, suppose we have $p: A \otimes B$. Then \otimes-induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

$$
\text { sym }: \equiv \lambda p . \text { let } x \otimes y=p \text { in } y \otimes x
$$

Then to prove $\prod_{(p: A \otimes B)} \operatorname{sym}(\operatorname{sym}(p))=p$, use \otimes-induction again: the goal reduces to $x \otimes y=x \otimes y$ for which we have reflexivity.

$$
\text { inv }: \equiv \lambda p . \text { let } x \otimes y=p \text { in refl } x_{x \otimes y}
$$

Colourful Variables

We need to prevent terms like $\lambda x . x \otimes x: A \rightarrow A \otimes A$, so variable use needs to be restricted somehow.

- Every variable x has a colour c .
- The relationships between colours are collected in a palette.

Palettes Φ are constructed by

$$
1 \quad \Phi_{1} \otimes \Phi_{2} \quad \Phi_{1}, \Phi_{2} \quad \mathfrak{c} \quad \mathfrak{c} \prec \Phi
$$

Typical palettes:

$$
\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b} \quad \mathfrak{w} \prec(\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}) \otimes \mathcal{Y} \quad \mathfrak{p} \prec\left(\mathfrak{r} \otimes \mathfrak{b}, \mathfrak{r}^{\prime} \otimes \mathfrak{b}^{\prime}\right)
$$

(Similar to 'bunched' type theory P. W. O'Hearn and Pym 1999;
P. O'Hearn 2003)

Using Colourful Variables

We need to keep track of the current 'top colour'. Suppose $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$, and we have variables $x^{\mathfrak{r}}: A, y^{\mathfrak{b}}: B, z^{\mathfrak{p}}: C$.

- To be well-formed, a term must 'be purple'.
- Only z:C is a well-formed term using the normal variable rule.
- Each of $\underline{x}: \underline{A}, \underline{y}: \underline{B}, \underline{z}: \underline{C}$ is well-formed: any variable can be used marked.
Ordinary type formers bind variables with the current top colour:

$$
\begin{gathered}
\sum_{(x: A)} B(x) \quad \prod_{(x: A)} B(x) \quad(\lambda x \cdot b) \\
\text { ind }_{+}\left(z \cdot C, x \cdot c_{1}, y \cdot c_{2}, p\right) \quad \operatorname{ind}_{=}\left(x \cdot x^{\prime} \cdot p \cdot C, x \cdot c, p\right)
\end{gathered}
$$

Rules for \otimes

Let p be the top colour.

- Formation: If $\underline{A}: \mathcal{U}$ and $\underline{B}: \mathcal{U}$, then $\underline{A} \otimes \underline{B}: \mathcal{U}$.
- Introduction: For any* $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$ and terms $a: \underline{A}$ with colour \mathfrak{r} and $b: \underline{B}(\underline{a})$ with colour \mathfrak{b}, there is a term

$$
a_{\mathrm{r}} \otimes_{\mathfrak{b}} b:\left(Q_{(\underline{x}}: \underline{A}\right) \underline{B}(\underline{x})
$$

- Elimination: Any term $p:(\operatorname{CD}(\underline{x}: A) \underline{B}(\underline{x})$ may be assumed to be of the form $x_{r} \otimes_{\mathfrak{b}} y$ for some variables $x^{\mathfrak{r}}: \underline{A}, y^{\mathfrak{b}}: \underline{B}(\underline{x})$ with $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$ in a term $c: C\left[x_{r} \otimes_{\mathfrak{b}} y / z\right]$.

$$
\left(\text { let } x_{\mathrm{r}} \otimes_{\mathfrak{b}} y=p \text { in } c\right): C[p / z]
$$

- Computation: If the term really is of the form $a_{\mathbf{r}^{\prime}} \otimes_{\mathbf{b}^{\prime}} b$, then

$$
\left(\text { let } x_{\mathrm{r}} \otimes_{\mathfrak{b}} y=a_{\mathbf{r}^{\prime}} \otimes_{\mathfrak{b}^{\prime}} b \text { in } c\right) \equiv c\left[\mathfrak{r}^{\prime} / \mathfrak{r} \otimes \mathfrak{b}^{\prime} / \mathfrak{b} \mid a / x, b / x\right]
$$

Eg: Symmetry

Proposition

There is a function sym : $\underline{A} \otimes \underline{B} \rightarrow \underline{B} \otimes \underline{A}$
Proof.
Suppose have $p: \underline{A} \otimes \underline{B}$. Then \otimes-induction on p gives $x^{r}: \underline{A}$ and $y^{\mathfrak{b}}: \underline{B}$, where $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$.
We need to form a purple term of $\underline{B} \otimes \underline{A}$, so 'split \mathfrak{p} into \mathfrak{b} and \mathfrak{r} '. Then we can form $y_{b} \otimes_{\mathrm{r}} x: \underline{B} \otimes \underline{A}$.

$$
\text { sym }: \equiv \lambda p . \text { let } x_{\mathrm{r}} \otimes_{\mathfrak{b}} y=p \text { in } y_{\mathfrak{b}} \otimes_{\mathfrak{r}} x
$$

But we don't have $\mathfrak{p} \prec \mathfrak{b} \otimes \mathfrak{r}$ literally, we need to allow for some symmetric monoidal structural rules.

Palette Splits

Need a more general judgement for when the palette linearly splits into two pieces: $p \prec \overrightarrow{\mathfrak{r}} \tilde{\otimes} \overrightarrow{\mathfrak{b}}$

Symmetry: In palette $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$, we have a split

$$
\mathfrak{p} \prec \mathfrak{b} \tilde{\otimes} \mathfrak{r}
$$

Associativity: In palette $\mathfrak{w} \prec(\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}) \otimes \mathfrak{y}$, we have a split

$$
\mathfrak{w} \prec \mathfrak{r} \tilde{\otimes}(\mathfrak{b} \otimes y)
$$

Cartesian weakening: In palette $\mathfrak{p} \prec\left(\mathfrak{r} \otimes \mathfrak{b}, \mathfrak{r}^{\prime} \otimes \mathfrak{b}^{\prime}\right)$, we have a split

$$
\mathfrak{p} \prec \mathfrak{r}^{\prime} \tilde{\otimes} \mathfrak{b}^{\prime}
$$

Rules for \otimes

Let p be the top colour.

- Formation: If $\underline{A}: \mathcal{U}$ and $\underline{B}: \underline{A} \rightarrow \mathcal{U}$, then $(\underline{x}: \underline{A}) \underline{B}(\underline{x}): \mathcal{U}$.
- Introduction: For any palette split $\mathfrak{p} \prec \overrightarrow{\mathfrak{r}} \tilde{\otimes} \overrightarrow{\mathfrak{b}}$ and terms $a: \underline{A}$ with colour \mathfrak{r} and $b: \underline{B}(\underline{a})$ with colour \mathfrak{b}, there is a term

$$
a_{\overrightarrow{\mathrm{r}}} \otimes_{\overrightarrow{\mathrm{b}}} b:(\mathrm{Q}(\underline{x}: \underline{A}) \underline{B}(\underline{x})
$$

- Elimination: Any term $p: \operatorname{CD}_{(\underline{x}: \underline{A})} \underline{B}(\underline{x})$ may be assumed to be of the form $x_{r} \otimes_{\mathfrak{b}} y$ for some variables $x^{\mathfrak{r}}: \underline{A}, y^{\mathfrak{b}}: \underline{B}(\underline{x})$ with $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$ in a term $c: C\left[x_{r} \otimes_{\mathfrak{b}} y / z\right]$.

$$
\left(\text { let } x_{\mathrm{r}} \otimes_{\mathfrak{b}} y=p \text { in } c\right): C[p / z]
$$

- Computation: If the term really is of the form $a_{\overrightarrow{\mathbf{r}^{\prime}}} \otimes_{\overrightarrow{\mathbf{b}^{\prime}}} b$, then

$$
\left(\text { let } x_{\mathrm{r}} \otimes_{\mathfrak{b}} y=a_{\overrightarrow{\mathbf{r}^{\prime}}} \otimes_{\overrightarrow{\mathbf{b}^{\prime}}} b \text { in } c\right) \equiv c\left[\overrightarrow{\mathbf{r}^{\prime}} / \mathbf{r} \otimes \overrightarrow{\mathfrak{b}^{\prime}} / \mathfrak{b} \mid a / x, b / x\right]
$$

Eg. Associativity

Proposition
assoc $: \underline{A} \otimes(\underline{B} \otimes \underline{C}) \simeq(\underline{A} \otimes \underline{B}) \otimes \underline{C}$
Proof.
Use (derivable) triple inductions to define

$$
\begin{aligned}
& \text { assoc }: \equiv \lambda p \text {.let }\left(a_{r} \otimes_{\mathbf{b}} b\right)_{p} \otimes_{p} c=p \text { in } a_{r} \otimes_{\mathbf{b} \otimes y}\left(b_{b} \otimes_{p} c\right) \\
& \text { associnv }: \equiv \lambda q \text {.let } a_{r} \otimes_{\mathfrak{H}}\left(b_{\mathfrak{b}} \otimes_{\mathrm{p}} c\right)=q \text { in }\left(a_{\mathrm{r}} \otimes_{\mathfrak{b}} b\right)_{\mathrm{r} \otimes \boldsymbol{b}} \otimes_{p} c
\end{aligned}
$$

Then to prove $\prod_{(p:(\underline{A} \otimes \underline{B}) \otimes \underline{C})} \operatorname{associnv}(\operatorname{assoc}(p))={ }_{(\underline{A} \otimes \underline{B}) \otimes \underline{C}} p$, use induction again:

$$
\text { linv }: \equiv \lambda p . \text { let }\left(a_{r} \otimes_{\mathfrak{b}} b\right)_{p} \otimes_{y} c=p \text { in refl }\left(a_{r} \otimes_{\mathfrak{b}} b\right)_{p} \otimes_{\gamma} c
$$

and similarly to show it is a right inverse.

Eg. Associativity

Proposition
assoc $: \underline{A} \otimes(\underline{B} \otimes \underline{C}) \simeq(\underline{A} \otimes \underline{B}) \otimes \underline{C}$
Proof.
Use (derivable) triple inductions to define

$$
\begin{aligned}
& \text { assoc }: \equiv \lambda p \text {.let }(a \otimes b) \otimes c=p \text { in } a \otimes(b \otimes c) \\
& \text { associnv }: \equiv \lambda q \text {.let } a \otimes(b \otimes c)=q \text { in }(a \otimes b) \otimes c
\end{aligned}
$$

Then to prove $\prod_{(p:(\underline{A} \otimes \underline{B}) \otimes \underline{C})} \operatorname{associnv}(\operatorname{assoc}(p))=(\underline{A \otimes} \underline{B}) \otimes \underline{C} p$, use induction again:

$$
\text { linv }: \equiv \lambda p \text {.let }(a \otimes b) \otimes c=p \text { in refl }(a \otimes b) \otimes c
$$

and similarly to show it is a right inverse.

Eg. Associativity

Like Σ,

$$
\begin{aligned}
& \text { assoc }:\left(\sum_{(x: A)} \sum_{(y: B(x))} C(x)(y)\right) \\
& \simeq\left(\sum_{\left(v: \sum_{(x: A)} B(x)\right)} C\left(\mathrm{pr}_{1} v\right)\left(\mathrm{pr}_{2} v\right)\right)
\end{aligned}
$$

There is a dependent verison:

$$
\begin{aligned}
\text { assoc }: & \left(Q_{(\underline{x}: \underline{A})} Q_{(\underline{y}: \underline{B}(\underline{x}))} \underline{C}(\underline{x})(\underline{y})\right) \\
& \simeq\left(Q_{\left(\underline{v}: Q_{(\underline{x}: A)} \underline{B}(\underline{x})\right)} \text { let } x \otimes y=\underline{v} \text { in } \underline{C}(\underline{x})(\underline{y})\right)
\end{aligned}
$$

Eg: Uniqueness principle for

Proposition
If $C: Q_{(\underline{x}: A)} \underline{B}(\underline{x}) \rightarrow \mathcal{U}$ is a type family and
$f: \prod_{\left(p:\left(\bigotimes_{(\underline{x}: A)}\right) \underline{B}(\underline{x})\right)} C(p)$, then for any $p: A \otimes B$ we have

$$
(\text { let } x \otimes y=p \operatorname{in} f(x \otimes y))=f(p)
$$

Proof.
By \otimes-induction we may assume $p \equiv x^{\prime} \otimes y^{\prime}$. Our goal is now

$$
\left(\text { let } x \otimes y=x^{\prime} \otimes y^{\prime} \text { in } f(x \otimes y)\right)=f\left(x^{\prime} \otimes y^{\prime}\right)
$$

Which by computation reduces to $f\left(x^{\prime} \otimes y^{\prime}\right)=f\left(x^{\prime} \otimes y^{\prime}\right)$, for which we have reflexivity.
(Cannot state this in indexed type or quantitative type theories)

Hom

$\frac{\Gamma \otimes A \vdash B}{\Gamma \vdash A \multimap B}$

Hom

$$
\frac{\Gamma \times(x: A) \vdash B}{\Gamma \vdash \vdash \lambda x \cdot b: \prod_{(x: A)} B}
$$

$$
\frac{\Gamma \otimes(y: \underline{A}) \vdash B}{\Gamma \vdash \partial y \cdot b: \mathbb{D}_{(y: A)^{B}}}
$$

Hom

$$
\xlongequal[p \mid \Gamma, x^{p}: A \vdash b: B]{\xlongequal[p \mid r \cdot b: \prod_{(x: A)} B]{ }}
$$

Rules for \multimap

Let p be the top colour.

- Formation/Introduction: If $b: B$ is a term using a fresh assumption $x^{y}: \underline{A}$ in palette $\mathfrak{w} \prec \mathfrak{p} \otimes p$, for fresh colours \mathfrak{w} and γ, then there is a (purple) term

$$
\partial^{\mathfrak{w}} x^{y} \cdot b:\left(\mathbb{D}\left(x^{\eta}: \underline{A}\right)^{B}\right.
$$

- Elimination: For any split $\mathfrak{p} \prec \overrightarrow{\mathfrak{r}} \tilde{\otimes} \overrightarrow{\mathfrak{b}}$ and terms $h:\left(\mathbb{1 D}\left(x^{x}: \underline{A}\right)\right.$ with colour \vec{r} and $a: \underline{A}$ with colour $\overrightarrow{\mathfrak{b}}$, there is a term

$$
\left.h_{\overrightarrow{\mathrm{r}}}\langle a\rangle_{\vec{b}}: B[\overrightarrow{\mathrm{~b}} / y \mid a / x)\right]
$$

- Computation: $\left(\partial^{0} x^{\nu} \cdot b\right)_{\vec{r}}\langle a\rangle_{\vec{b}} \equiv b[(\vec{b} / y \mid a / x)]$
- Uniqueness: $h \equiv \partial^{\mathfrak{w}} \chi^{\nu} .\left(h_{p}\langle x\rangle_{y}\right)$

Eg. Currying

Let y be the top colour.
Proposition
There is a $\operatorname{map}((\underline{A} \otimes \underline{B}) \multimap \underline{C}) \rightarrow(\underline{A} \multimap(\underline{B} \multimap \underline{C}))$.
Proof.
Suppose $h^{\nu}:(A \otimes B) \multimap C$. Using ∂-abstraction binds $x^{r}: \underline{A}$, and our goal is $\underline{B} \multimap \underline{C}$ in $\circ \prec \gamma \otimes \mathfrak{r}$.

Another ∂-abstraction binds $y^{\mathfrak{b}}: \underline{B}$, and our goal is \underline{C} in $\mathfrak{w} \prec(o \prec \nu \otimes \mathfrak{r}) \otimes \mathfrak{b}$.

Pairing x and y gives a term $x_{r} \otimes_{\mathfrak{b}} y: \underline{A} \otimes \underline{B}$ of colour $\mathfrak{r} \otimes \mathfrak{b}$. Applying h to this gives $h_{p}\left\langle x_{r} \otimes_{\mathfrak{b}} y\right\rangle_{\mathrm{r} \otimes \boldsymbol{b}}: \underline{C}$.
$\lambda h . \partial^{\circ} x^{\mathfrak{r}} . \partial^{\mathfrak{w}} y^{\mathfrak{b}} . h_{\boldsymbol{y}}\left\langle x_{\mathrm{r}} \otimes_{\mathfrak{b}} y\right\rangle_{\mathrm{r} \otimes \mathfrak{b}} \quad$ or simply $\quad \lambda h . \partial x . \partial y . h\langle x \otimes y\rangle$

Eg. Homs vs Functions

When can we build a non-trivial map? (Here meaning a map that does not use any variable marked.)

Given $f: \underline{A} \rightarrow \underline{B}$	$\underline{A} \rightarrow \underline{B}$	$\underline{A} \multimap \underline{B}$	$\underline{A} \rightarrow \underline{B} \times \underline{B}$	$\underline{A} \multimap \underline{B} \times \underline{B}$	$\underline{A} \rightarrow \underline{B} \otimes \underline{B}$	$\underline{A} \multimap \underline{B} \otimes \underline{B}$
Given $h: \underline{A} \multimap \underline{B}$	$\underline{A} \rightarrow \underline{B}$	$\underline{A} \multimap \underline{B}$	$\underline{A} \rightarrow \underline{B} \times \underline{B}$	$\underline{A} \multimap \underline{B} \times \underline{B}$	$\underline{A} \rightarrow \underline{B} \otimes \underline{B}$	$\underline{A} \multimap \underline{B} \otimes \underline{B}$
Given $0: 1$	$\underline{A} \rightarrow \underline{A}$	$\underline{A} \multimap \underline{A}$	$\underline{A} \rightarrow 1$	$\underline{A} \multimap 1$	$\underline{A} \rightarrow \mathbb{S}$	$\underline{A} \multimap \mathbb{S}$
Given $s: \mathbb{S}$	$\underline{A} \rightarrow \underline{A}$	$\underline{A} \multimap \underline{A}$	$\underline{A} \rightarrow 1$	$\underline{A} \multimap 1$	$\underline{A} \rightarrow \mathbb{S}$	$\underline{A} \multimap \mathbb{S}$

Hom Extensionality

Hom Extensionality

Let us write the top colour as r. For $f, g:(\mathbb{D}(x: A) B\langle x\rangle$,

$$
\text { homapp }(f, g):(f=g) \rightarrow \mathbb{C D}_{(x: A)} f\langle x\rangle=g\langle x\rangle
$$

is given by path induction:

$$
\operatorname{homapp}(f, f)\left(\operatorname{refl}_{f}\right): \equiv \partial x \cdot \operatorname{refl}_{f\langle x\rangle}
$$

Axiom Homext
For any $f, g: \mathbb{T D}_{(x: \underline{A})} B\langle x\rangle$, the function homapp (f, g) is an equivalence.

Theorem
Univalence implies hom extensionality.

Strategy

Almost the same proof as for functions! Following the HoTT book:

1. 'Naive' homext (there is a map back).
2. Weak homext (homs into contractible families are contractible).
3. Homext.

Quick Lemma

Definition

The postcomposition of $h: A \rightarrow B$ with $f: B \rightarrow B^{\prime}$ is defined by

$$
\begin{aligned}
& \operatorname{postcomp}(f, h): A \rightarrow B^{\prime} \\
& \operatorname{postcomp}(f, h): \equiv \lambda x \cdot f(h(x))
\end{aligned}
$$

Lemma

Any equivalence e : $B \simeq B^{\prime}$ induces an equivalence $(A \rightarrow B) \simeq\left(A \rightarrow B^{\prime}\right)$ by postcomposition with e.

Proof.
e is the image of some $p: B=B^{\prime}$ under univalence. By path induction, assume $p \equiv \operatorname{refl}_{B}$, so $e \equiv \operatorname{id}_{B}$. Then postcomposition with e is the identity, and so is an equivalence.

Quick Lemma

Definition

The postcomposition of $h: \underline{A} \multimap \underline{B}$ with $\underline{f}: \underline{B} \rightarrow \underline{B^{\prime}}$ is defined by

$$
\begin{aligned}
& \operatorname{postcomp}(\underline{f}, h): \underline{A} \multimap \underline{B}^{\prime} \\
& \operatorname{postcomp}(\underline{f}, h): \equiv \partial x \cdot \underline{f}(h\langle x\rangle)
\end{aligned}
$$

Lemma

Any equivalence e : $B \simeq B^{\prime}$ induces an equivalence $(\underline{A} \multimap \underline{B}) \simeq\left(\underline{A} \multimap \underline{B}^{\prime}\right)$ by postcomposition with \underline{e}.

Proof.
e is the image of some $p: B=B^{\prime}$ under univalence. By path induction, assume $p \equiv \operatorname{refl}_{B}$, so $e \equiv \operatorname{id}_{B}$. Then postcomposition with \underline{e} is the identity, and so is an equivalence.

Naive Funext

Proposition

For $f, g: A \rightarrow B$ there is a map $\left(\prod_{(x: A)} f(x)=g(x)\right) \rightarrow(f=g)$.
Proof.
Given $h: \prod_{(x: A)} f(x)=g(x)$, define

$$
\begin{aligned}
d, e & : A \rightarrow\left(\sum_{(y: B)} \sum_{\left(y^{\prime}: B\right)} y=y^{\prime}\right) \\
d & : \equiv \lambda x \cdot\left(f(x), f(x), \operatorname{refl}_{f(x)}\right) \\
e & : \equiv \lambda x \cdot(f(x), g(x), h(x))
\end{aligned}
$$

Then $d=e$ because they become equal under the equivalence

$$
\operatorname{postcomp}\left(\mathrm{pr}_{1},-\right):\left[A \rightarrow\left(\sum_{(y: B)} \sum_{\left(y^{\prime}: B\right)} y=y^{\prime}\right)\right] \rightarrow[A \rightarrow B]
$$

And ap of postcomp $\left(\mathrm{pr}_{2},-\right)$ on the path $d=e$ gives a path $\lambda x . f(x)=\lambda x . g(x)$, which is $f=g$.

Naive Homext

Proposition
For $f, g: \underline{A} \longrightarrow \underline{B}$ there is a map $\left(\mathbb{(1 D}_{(x: \underline{A})} f\langle x\rangle=g\langle x\rangle\right) \rightarrow(f=g)$.
Proof.
Given $h: \mathbb{D I}_{(x: A)} f\langle x\rangle=g\langle x\rangle$, define

$$
\begin{aligned}
d, e & : \underline{A} \multimap\left(\sum_{(y: \underline{B})} \sum_{\left(y^{\prime}: \underline{B}\right)^{y}}=y^{\prime}\right) \\
d & : \equiv \partial x \cdot\left(f\langle x\rangle, f\langle x\rangle, \operatorname{ref}_{f\langle x\rangle}\right) \\
e & : \equiv \partial x \cdot(f\langle x\rangle, g\langle x\rangle, h\langle x\rangle)
\end{aligned}
$$

Then $d=e$ because they become equal under the equivalence

$$
\operatorname{postcomp}\left(\operatorname{pr}_{1},-\right):\left[\underline{A} \multimap\left(\sum_{(y: \underline{B})} \sum_{\left(y^{\prime}: \underline{B}\right)^{y}}=y^{\prime}\right)\right] \rightarrow[\underline{A} \multimap \underline{B}]
$$

And ap of postcomp $\left(\mathrm{pr}_{2},-\right)$ on the path $d=e$ gives a path, $\partial x . f\langle x\rangle=\partial x . g\langle x\rangle$, which is $f=g$.

Weak Funext

Proposition

$\prod_{(x: A)}$ isContr$(B(x)) \rightarrow$ isContr $\left(\prod_{(x: A)} B(x)\right)$
Proof.
Suppose $w: \prod_{(x: A)}$ isContr $(B(x))$. From w and univalence we can build a term of $\prod_{(x: A)}(B(x)=1)$.
Then naive funext gives $p: B=(\lambda x .1)$, and we can form

$$
\operatorname{ap}_{\prod_{(x: A)}-(x)}(p):\left(\prod_{(x: A)} B(x)\right)=(A \rightarrow 1)
$$

Now $A \rightarrow 1$ is contractible because for any $f: A \rightarrow 1$ we have $f \equiv \lambda x . f(x) \equiv \lambda x . \star$. Transport isContr$(A \rightarrow 1)$ along the above path.

Weak Homext

Proposition
(II) $(x: \underline{A})$ is $\operatorname{Contr}(B\langle x\rangle) \rightarrow$ isContr $\left(\right.$ (ID $\left._{(x: \underline{A})} B\langle x\rangle\right)$

Proof.
Suppose $w: \mathbb{D}_{(x: A)}$ isContr $(B\langle x\rangle)$. From w and univalence we can build a term of (11) $(x: \underline{A})(B\langle x\rangle=1)$.
Then naive homext gives $p: B=(\partial x .1)$, and we can form

$$
\mathrm{ap}_{\mathbb{D I}_{(x: \underline{A})}-\langle x\rangle}(p):\left(\mathbb{(1 D}_{(x: \underline{A})} B\langle x\rangle\right)=(\underline{A} \multimap 1)
$$

Now $\underline{A} \multimap 1$ is contractible because for any $f: \underline{A} \multimap 1$ we have $f \equiv \partial x . f\langle x\rangle \equiv \partial x . \star$. Transport isContr $(\underline{A} \multimap 1)$ along the above path.

\rightarrow Preserves Σ

Proposition

$$
A \rightarrow(B \times C) \simeq(A \rightarrow B) \times(A \rightarrow C)
$$

Or with maximal dependency:

$$
\prod_{(x: A)} \sum_{(y: B(x))} C(x)(y) \simeq \sum_{\left(g: \prod_{(x: A)} B(x)\right)} \prod_{(x: A)} C(x)(g(x))
$$

Proof.
Define maps back and forth:

$$
\begin{aligned}
f & \mapsto\left(\lambda x \cdot \mathrm{pr}_{1}(f(x)), \lambda x \cdot \mathrm{pr}_{2}(f(x))\right) \\
(g, h) & \mapsto \lambda x \cdot(g(x), h(x))
\end{aligned}
$$

Both round-trips are definitionally the identity.

\multimap Preserves Σ

Proposition

$$
\underline{A} \multimap(\underline{B} \times \underline{C}) \simeq(\underline{A} \multimap \underline{B}) \times(\underline{A} \multimap \underline{C})
$$

Or with maximal dependency:

Proof.
Define maps back and forth:

$$
\begin{aligned}
f & \mapsto\left(\partial x \cdot \operatorname{pr}_{1}(f\langle x\rangle), \partial x \cdot \operatorname{pr}_{2}(f\langle x\rangle)\right) \\
(g, h) & \mapsto \partial x \cdot(g\langle x\rangle, h\langle x\rangle)
\end{aligned}
$$

Both round-trips are definitionally the identity.

Homext

Theorem
Function extensionality holds.
Proof.
Fixing an f and working fibrewise, we need

$$
\left(\sum_{\left(g: \Pi_{(x: A)} B(x)\right)}(f=g)\right) \rightarrow\left(\sum_{\left(g: \Pi_{(x: A)} B(x)\right)} \Pi_{(x: A)} f(x)=g(x)\right)
$$

given by $\lambda(g, p) .(g$, happly $(f, g)(p))$ is an equivalence. The LHS is contractible, so we just need the RHS also contractible. By the last Proposition, the RHS is equivalent to

$$
\prod_{(x: A)} \sum_{(y: B(x))} f(x)=y
$$

which is contractible by weak homext.

Funext

Theorem

Hom extensionality holds.
Proof.
Fixing an f and working fibrewise, we need

$$
\left.\left(\sum_{(g: \mathbb{D}}^{(x: A)} \mid B\langle x\rangle\right), ~(f=g)\right) \rightarrow\left(\sum_{\left.\left(g: \mathbb{D}_{(x: A}\right) B\langle x\rangle\right)} \mathbb{D D}_{(x: \underline{A})} f\langle x\rangle=g\langle x\rangle\right)
$$

given by $\lambda(g, p) .(g$, homapp $(f, g)(p))$ is an equivalence. The LHS is contractible, so we just need the RHS also contractible. By the last Proposition, the RHS is equivalent to

$$
\text { (11) }(x: \underline{A}) \sum_{(y: B\langle x\rangle)} f\langle x\rangle=y
$$

which is contractible by weak funext.

Summary Future

- Extension of HoTT with $\downarrow, \otimes, \multimap$ and \mathbb{S}
- Compatible with existing synthetic results
- Can show: a map of spaces $\underline{X} \rightarrow \underline{Y}$ gives a 'six functor formalism' between $\underline{X} \rightarrow$ Spec and $\underline{Y} \rightarrow$ Spec
- What can we prove about (co)homology synthetically?
- Can generalise to let \mathcal{C} be not pointed? (Probably!)

References I

Atkey, Robert (2018). "Syntax and semantics of quantitative type theory". In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '18. Oxford, United Kingdom: Association for Computing Machinery, pp. 56-65. ISBN: 978-1-4503-5583-4. DOI: 10.1145/3209108.3209189.
Fu, Peng, Kohei Kishida, and Peter Selinger (2020). "Linear Dependent Type Theory for Quantum Programming Languages: Extended Abstract". In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '20. Saarbrücken, Germany: Association for Computing Machinery, pp. 440-453. ISBN: 978-1-4503-7104-9. DOI: 10.1145/3373718.3394765.
Hoyois, Marc (2019). "Topoi of parametrized objects". In: Theory and Applications of Categories 34, Paper No. 9, 243-248. URL: http://www.tac.mta.ca/tac/volumes/34/9/34-09abs.html.
Isaev, Valery (2021). "Indexed type theories". In: Mathematical Structures in Computer Science 31.1, pp. 3-63. doi: 10.1017/S0960129520000092.

References II

Krishnaswami, Neelakantan R., Pierre Pradic, and Nick Benton (2015). "Integrating Linear and Dependent Types". In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '15. Mumbai, India: Association for Computing Machinery, pp. 17-30. ISBN: 978-1-4503-3300-9. DOI: 10.1145/2676726.2676969.

McBride, Conor (2016). "I got plenty o' nuttin'". In: A list of successes that can change the world. Vol. 9600. Lecture Notes in Computer Science. Springer International Publishing, pp. 207-233. DOI: 10.1007/978-3-319-30936-1_12.

Moon, Benjamin, Harley Eades III, and Dominic Orchard (2021). "Graded Modal Dependent Type Theory". In: Programming Languages and Systems. Ed. by Nobuko Yoshida. Cham: Springer International Publishing, pp. 462-490. Doi: 10.1007/978-3-030-72019-3_17.
O'Hearn, Peter (2003). "On bunched typing". In: Journal of Functional Programming 13.4, pp. 747-796. ISSN: 0956-7968. Doi: 10.1017/S0956796802004495.

References III

O'Hearn, Peter W. and David J. Pym (1999). "The logic of bunched implications". In: Bulletin of Symbolic Logic 5.2, pp. 215-244. ISSN: 1079-8986. DOI: 10.2307/421090.
Riley, Mitchell, Eric Finster, and Daniel R. Licata (2021). Synthetic
Spectra via a Monadic and Comonadic Modality, arXiv: 2102.04099.
Vákár, Matthjis (2014). Syntax and Semantics of Linear Dependent Types. arXiv: 1405.0033 [cs.AT].

