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Spectra

Definition
A prespectrum E is a sequence of pointed types E : N — U,
together with pointed maps «a, : E, =« QEq 1.

A spectrum is a prespectrum such that the «,, are pointed
equivalences.

Example

Each abelian group G yields a spectrum with E, := K(G, n), the
‘Eilenberg-MacLane spaces’'.

Example
The zero spectrum with E, := 1.

Example

The sphere prespectrum has E, := 5", with «, the transpose of
ySn -, St
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Cohomology and Homology

Definition
Given a spectrum E and a pointed type X,
» the cohomology of X with coefficients in E is

E"(X) := mo(X —« Ep)

» the homology of X with coefficients in E is

En(X) := colim (X A Ek)
k—o0

where AA B := (A x B)/(AV B) is the smash product.
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Problem

Working with the smash product in HoTT is a serious endeavour!

There ought to be a smash product of two spectra.
(But how? Describe ‘highly structured spectra’ internally? Yow!)

Instead: Model type theory in a topos where spectra already exist.
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Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

ooy 0
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Theorem (Joyal 2008)

The co-category of parameterised spectra, PSpec, is an co-topos.

So is a model of HoTT.
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A Toy Model: Families of Pointed Types

Definition
A context I is a type ['g and a type family I'g : g — U with a
chosen basepoint yo(v) : [g(7y) for each v : '
A type A in context I is a family Ag : g — U and family
A (v:Tg) = Te(y) — As(y) - U

with a chosen basepoint ag(7y, a) : Ae(y,70(7), a) for each v : '
and a: Ag(7).

(This was one of Ulrik's ‘toy models’ of cohesion)



Goal:

Add type formers that capture some of the additional structure in
these models.






Underlying Space

For every type A there should be a type hA that deletes the
spectral information.

0
T



Underlying Space

For every type A there should be a type hA that deletes the
spectral information.

VA
il

This f is an idempotent monad and comonad that is adjoint to
itself.

Like Mike's Spatial Type Theory, but with § =b.
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Recall: Spatial Type Theory

b is a lex idempotent comonad, f is an idempotent monad, and
b - f.

We put in a judgemental version of b and have the type formers
interact with it.

AlTFa:A corresponds to a:bAxTI — A

VAR-CRISP

Ax:AAN|TEx:A
corresponds to
W(AXxAx A)xT —=bhA— A

Al-Fa:A
b-INTRO ——————
A|THEE DA
corresponds to

bA x T —bhA — bhA — HA
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The Unit?

In spatial type theory, the counit is invisible: there was an
admissible rule

A|lx:AlTEb:B
A x:A|lT+b:B
With f we have a dilemma: there is both a unit A — A and a
counit §A — A, the round trip on A is not the identity.
Ax:A|TEb: B
A|x:ATFb:B

We choose to make the counit explicit.
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/Zones?

We can’t just divide the context into two zones anymore.
x:Ay:B(x)|z:CFd:D
What if we want to precompose with the unit on x : A only?

y:B(x)|x:Az:Ctd:D
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Zeroed Variables

Metx  MOF A type
X% A ctx

Fx%:ATMEX: A Fox: AT EX0: A
% denotes an operation that zeroes all the variables in T,

Mx:AT-b:B
COUNIT — — — — — o
r, x° DA, r'[xo/x] = b[xo/x] B[XO/X]

rx°:AT-b:B
UNIT ———— — ——— J—
Mx:Al'+-b:B



Rules for

Mk A type
§-FORM
I+ BA type
Mra:A Fr-a:gA
-INTRO 7 B-ELIM
a'gA MN=a,: A
ahh =a n= nohu

These are the f-style rules. The b-style rules are derivable!



1 and Dependency

A context
x: A y?: B(x%),z: C(x,y°),w?: D(xy°, 2%

corresponds in the model to
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Smash Product

For two types A and B there should be a type A® B
corresponding to the ‘external smash product’.

U0 Dl

A AT

This is a symmetric monoidal product with no additional structural
rules.



Bunched Contexts

We can take a cue from ‘bunched logics’, where there are two ways
of combining contexts, an ordinary cartesian one and a linear one.

M ctx 5 ctx M1 ctx 5 ctx
|_1, [ ctx (I‘l)(l'g) ctx

For the comma only, we have weakening and contraction as
normal.
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Bunched Contexts

A typical context:
x:A(y:B)z:C.(p: P)q: Q),w:D

Or as a tree:
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Simple Smash

A type B type

®-FORM
A® B type

QFa: A QFb:B
(QQ)Favb: Ao B

®-INTRO

M{(x:A)(y:B)}tFc:C
AFs:A®B

®-ELIM
M{A}Fletx®y =sinc: C
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Smash and Dependency

When does a ‘dependent external smash” A ® B make sense?

Recall: A type A in context I is a family Ag : g — U and family
Ac:(v:Tg) = Te(y) = Ag(y) = U

with a chosen basepoint ag(7, a) : Ae(7v,70(7), a) for each v : '
and a: Ag(7y).

We can only do it when the fibers of A and B don't depend on .
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Smash and Dependency

We will be allowed to form contexts like:

x:Ag, «-y:Bg(x0), < z:Ca(x0y°%), <« w:Dg(x0y° 2%
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The judgemental ‘context smash’.

= Q tele
[ Q tele MQFQ tele
r,Q ctx M= Q,Q tele
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0.Q% Q tele
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Dependent Smash

The judgemental ‘context smash’.

M Q tele Ok Q tele
[ Q tele MLQFQ tele .00+ Q' tele
r,Q ctx MEQ,Q tele M (Q)(Q) tele

A type that internalises it:

Ok A type 0. x%: A%+ B type
M= @(XO:A) B type

®-FORM

0,Qa°%Mk+a:A 10,00, Mk b: B[a%/x°]
®-INTRO

F(QQ), M -a®@b: Q. B
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(A bit of a pain! The unitor isomorphism has to be built into
several of the other rules.)



Extras

Also rules for:

» The monoidal unit S.
(A bit of a pain! The unitor isomorphism has to be built into

several of the other rules.)
Dependent ‘linear hom' types A — B, right adjoint to — ® A.
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Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write
(x: A)y : B(x%),z: C(x,y),w®: D(x°y°,2°)

as
X A,y : B(X),Z: C(Xa)/)aw : D(X,y,Z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.
In ®-intro, the two sides must have disjoint colours: a ® b.
In ®-elim, we create two new colours that sum to the colour of the
target:

let x®y = pinc
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Eg: Uniqueness principle for ®

Proposition
Suppose A and B are types. If C: A® B — U is a type family and
f: H(p:A®B) C(p), then for any p : A® B we have

(letx®y =pinf(x®y))=rf(p)

Proof.
Let P: A® B — U denote the type family

P(p) = (let x @ y = pin f(x 2 y)) = F(p)

We wish to find an element of [[, x5y P(P)-



Eg: Uniqueness principle for ®

Proposition
Suppose A and B are types. If C: A® B — U is a type family and
f: H(p:A®B) C(p), then for any p : A® B we have

(letx®y =pinf(x®y))=rf(p)

Proof.
Let P: A® B — U denote the type family

P(p) = (let x @ y = pin f(x 2 y)) = F(p)

We wish to find an element of [](, 455y P(p). By ®-induction we
may assume p = x’ ® y’. Our goal is now

(letx®y=x@yinf(x®y))=Ff(xay)

Which by the S-rule reduces to f(x' @ y') = f(x' @ y'). O
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Non-Eg: A diagonal map for ®

We cannot define an interesting A : A— A® A in general.

Given a: A, forming a® a: A® A is not allowed: the two inputs to
®-intro do not have disjoint colours.

But we can form a® a: A® A, the diagonal map on the base and
constantly zero in the fibers.
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Eg: Base of ) is >

Proposition
h@(x:A) B(X) = Z(u:hA) hB(Uh)
Proof.

Given w : ff Q) x.a) B(x) we have a term wy : @ x.a) B(x).
Induction on this gives x : A and y : B(x), from which we can

produce (thyu) : Z(u:hA) hB(Uh)

In the other direction, from z: 37,4y 1B(x;) we get pry(z); : A
and pry(z); : B(pri(z)y). These terms are (vacuously) blue and red
respectively so we can form

(pra(2): ® pra(2):) ) B(x)
x:A

O

and apply (—)% Now check round trips.



Axioms?

How do we characterise parameterised spectra amongst the
models? Possibilities:

» 1t is S-nullification
> ¥"S — QYIS is an equivalence

> Relate S to the stable homotopy groups of ordinary spheres
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