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Spectra and Parameterised Spectra



Spectra

Definition
A prespectrum E is a sequence of pointed types E : N→ U?
together with pointed maps αn : En →? ΩEn+1.

A spectrum is a prespectrum such that the αn are pointed
equivalences.

Example

Each abelian group G yields a spectrum with En :≡ K (G , n), the
‘Eilenberg-MacLane spaces’.

Example

The zero spectrum with En :≡ 1.

Example

The sphere prespectrum has En :≡ Sn, with αn the transpose of
ΣSn →? S

n+1
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Cohomology and Homology

Definition
Given a spectrum E and a pointed type X ,

I the cohomology of X with coefficients in E is

En(X ) :≡ π0(X →? En)

I the homology of X with coefficients in E is

En(X ) :≡ colim
k→∞

πn+k(X ∧ Ek)

where A ∧ B := (A× B)/(A ∨ B) is the smash product.
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Problem

Working with the smash product in HoTT is a serious endeavour!

There ought to be a smash product of two spectra.
(But how? Describe ‘highly structured spectra’ internally? Yow!)

Instead: Model type theory in a topos where spectra already exist.
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Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.
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A Toy Model: Families of Pointed Types

Definition
A context Γ is a type ΓB and a type family ΓE : ΓB → U with a
chosen basepoint γ0(γ) : ΓE (γ) for each γ : ΓB

A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

ΓE , AE , BE ,

ΓB , AB , BB ,

(This was one of Ulrik’s ‘toy models’ of cohesion)
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Goal:

Add type formers that capture some of the additional structure in
these models.



The ‘Underlying Space’ Modality



Underlying Space

For every type A there should be a type \A that deletes the
spectral information.

This \ is an idempotent monad and comonad that is adjoint to
itself.

Like Mike’s Spatial Type Theory, but with ] ≡ [.
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Recall: Spatial Type Theory

[ is a lex idempotent comonad, ] is an idempotent monad, and
[ a ].
We put in a judgemental version of [ and have the type formers
interact with it.

∆ | Γ ` a : A corresponds to a : [∆× Γ→ A

var-crisp
∆, x :: A,∆′ | Γ ` x : A

corresponds to

[(∆× A×∆′)× Γ→ [A→ A

[-intro
∆ | · ` a : A

∆ | Γ ` a[ : [A

corresponds to

[∆× Γ→ [∆→ [[∆→ [A
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The Unit?

In spatial type theory, the counit is invisible: there was an
admissible rule

counit
∆ | x : A, Γ ` b : B

∆, x : A | Γ ` b : B
−−−−−−−−−−

With \ we have a dilemma: there is both a unit A→ \A and a
counit \A→ A, the round trip on A is not the identity.

unit?
∆, x : A | Γ ` b : B

∆ | x : A, Γ ` b : B
−−−−−−−−−−

We choose to make the counit explicit.
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Zones?

We can’t just divide the context into two zones anymore.

x : A, y : B(x) | z : C ` d : D

What if we want to precompose with the unit on x : A only?

y : B(x) | x : A, z : C ` d : D
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Zeroed Variables

Γ ctx Γ0 ` A type

Γ, x0 : A ctx

Γ, x0 : A, Γ′ ` x0 : A Γ, x : A, Γ′ ` x0 : A0

Γ0 denotes an operation that zeroes all the variables in Γ.

counit
Γ, x : A, Γ′ ` b : B

Γ, x0 : A, Γ′[x0/x ] ` b[x0/x ] : B[x0/x ]
−−−−−−−−−−−−−−−−−−−−−

unit
Γ, x0 : A, Γ′ ` b : B

Γ, x : A, Γ′ ` b : B
−−−−−−−−−−−
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Rules for \

\-form
Γ0 ` A type

Γ ` \A type

\-intro
Γ0 ` a : A

Γ ` a\ : \A
\-elim

Γ ` a : \A

Γ ` a\ : A

a\\ ≡ a n ≡ n0\
\

These are the ]-style rules. The [-style rules are derivable!



\ and Dependency

A context

x : A, y0 : B(x0), z : C (x , y0),w0 : D(x0, y0, z0)

corresponds in the model to

x : AE , z : CE (x)

x0 : AB , y0 : BB(x0), z0 : CB(x0, y0), w0 : DB(x0, y0, z0)



The Smash Product



Smash Product

For two types A and B there should be a type A⊗ B
corresponding to the ‘external smash product’.

⊗

This is a symmetric monoidal product with no additional structural
rules.
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Bunched Contexts

We can take a cue from ‘bunched logics’, where there are two ways
of combining contexts, an ordinary cartesian one and a linear one.

Γ1 ctx Γ2 ctx

Γ1, Γ2 ctx

Γ1 ctx Γ2 ctx

(Γ1)(Γ2) ctx

For the comma only, we have weakening and contraction as
normal.



Bunched Contexts

A typical context:

x : A, (y : B)(z : C , (p : P)(q : Q)),w : D

Or as a tree:

×

x : A ⊗

y : B ×

z : C ⊗

p : P q : Q

w : D
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Simple Smash

⊗-form
A type B type

A⊗ B type

⊗-intro
Ω ` a : A Ω′ ` b : B

(Ω)(Ω′) ` a⊗ b : A⊗ B

⊗-elim

Γ{(x : A)(y : B)} ` c : C
∆ ` s : A⊗ B

Γ{∆} ` let x ⊗ y = s in c : C
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Smash and Dependency

When does a ‘dependent external smash’ A⊗ B make sense?

Recall: A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

We can only do it when the fibers of A and B don’t depend on ΓE .
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Smash and Dependency

We will be allowed to form contexts like:

x : A, (y : B(x0))(z : C (x0, y0)),w : D(x , y , z)

x : AE , (y : BE z : CE ), w : DE (x , y ⊗ z)

x : AB , y : BB(x0), z : CB(x0, y0), w : DB(x0, y0, z0)
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Dependent Smash

The judgemental ‘context smash’.

Γ ` Ω tele

Γ,Ω ctx

Γ ` Ω tele
Γ,Ω ` Ω′ tele

Γ ` Ω,Ω′ tele

Γ0 ` Ω tele

Γ0,Ω0 ` Ω′ tele

Γ ` (Ω)(Ω′) tele

A type that internalises it:

⊗-form
Γ0 ` A type Γ0, x0 : A0 ` B type

Γ ` ©∑ (x0:A) B type

⊗-intro
Γ0,Ω,Ω′0, Γ′0 ` a : A Γ0,Ω0,Ω′, Γ′0 ` b : B[a0/x0]

Γ, (Ω)(Ω′), Γ′ ` a⊗ b :©∑ (x0:A) B

. . .
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Extras

Also rules for:

I The monoidal unit S.
(A bit of a pain! The unitor isomorphism has to be built into
several of the other rules.)

I Dependent ‘linear hom’ types A ( B, right adjoint to −⊗ A.
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Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write

(x : A)(y : B(x0)), z : C (x , y),w0 : D(x0, y0, z0)

as
x : A, y : B(x), z : C (x , y),w : D(x , y , z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.
In ⊗-intro, the two sides must have disjoint colours: a⊗ b.
In ⊗-elim, we create two new colours that sum to the colour of the
target:

let x ⊗ y = p in c
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Eg: Uniqueness principle for ⊗

Proposition

Suppose A and B are types. If C : A⊗ B → U is a type family and
f :

∏
(p:A⊗B) C (p), then for any p : A⊗ B we have

(let x ⊗ y = p in f (x ⊗ y)) = f (p)

Proof.
Let P : A⊗ B → U denote the type family

P(p) :≡ (let x ⊗ y = p in f (x ⊗ y)) = f (p)

We wish to find an element of
∏

(p:A⊗B) P(p). By ⊗-induction we

may assume p ≡ x ′ ⊗ y ′. Our goal is now

(let x ⊗ y = x ′ ⊗ y ′ in f (x ⊗ y)) = f (x ′ ⊗ y ′)

Which by the β-rule reduces to f (x ′ ⊗ y ′) = f (x ′ ⊗ y ′).
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Non-Eg: A diagonal map for ⊗

We cannot define an interesting ∆ : A→ A⊗ A in general.

Given a : A, forming a⊗ a : A⊗A is not allowed: the two inputs to
⊗-intro do not have disjoint colours.

But we can form a⊗ a : A⊗ A, the diagonal map on the base and
constantly zero in the fibers.
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x :A

B(x)

and apply (−)\. Now check round trips.
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Axioms?

How do we characterise parameterised spectra amongst the
models? Possibilities:

I \ is S-nullification

I ΣnS→ ΩΣn+1S is an equivalence

I Relate S to the stable homotopy groups of ordinary spheres
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