A Type Theory for Parameterised Spectra

Mitchell Riley
Dan Licata
jww. Eric Finster

Wesleyan University

8th March 2020

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N — U,
together with pointed maps «a, : E, =« QEq 1.

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N — U,
together with pointed maps «a, : E, =« QEq 1.

A spectrum is a prespectrum such that the «,, are pointed
equivalences.

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N — U,
together with pointed maps «a, : E, =« QEq 1.

A spectrum is a prespectrum such that the «,, are pointed
equivalences.

Example

Each abelian group G yields a spectrum with E, := K(G, n), the
‘Eilenberg-MacLane spaces’'.

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N — U,
together with pointed maps «a, : E, =« QEq 1.

A spectrum is a prespectrum such that the «,, are pointed
equivalences.

Example

Each abelian group G yields a spectrum with E, := K(G, n), the
‘Eilenberg-MacLane spaces’'.

Example
The zero spectrum with E, := 1.

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N — U,
together with pointed maps «a, : E, =« QEq 1.

A spectrum is a prespectrum such that the «,, are pointed
equivalences.

Example

Each abelian group G yields a spectrum with E, := K(G, n), the
‘Eilenberg-MacLane spaces’'.

Example
The zero spectrum with E, := 1.

Example

The sphere prespectrum has E, := 5", with «, the transpose of
ySn -, St

Cohomology and Homology

Definition
Given a spectrum E and a pointed type X,
» the cohomology of X with coefficients in E is

E"(X) := mo(X —« Ep)

Cohomology and Homology

Definition
Given a spectrum E and a pointed type X,
» the cohomology of X with coefficients in E is

E"(X) := mo(X —« Ep)

» the homology of X with coefficients in E is

En(X) := colim (X A Ek)
k—o0

where AA B := (A x B)/(AV B) is the smash product.

Problem

Working with the smash product in HoTT is a serious endeavour!

Problem

Working with the smash product in HoTT is a serious endeavour!

There ought to be a smash product of two spectra.
(But how? Describe ‘highly structured spectra’ internally? Yow!)

Problem

Working with the smash product in HoTT is a serious endeavour!

There ought to be a smash product of two spectra.
(But how? Describe ‘highly structured spectra’ internally? Yow!)

Instead: Model type theory in a topos where spectra already exist.

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

HOU
Jaa

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

000

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

ooy 0
AR

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

ooy 0
AR

Theorem (Joyal 2008)

The co-category of parameterised spectra, PSpec, is an co-topos.

So is a model of HoTT.

A Toy Model: Families of Pointed Types

Definition
A context I is a type ['g and a type family I'g : g — U with a
chosen basepoint yo(v) : [g(7y) for each v : '

A Toy Model: Families of Pointed Types

Definition
A context I is a type ['g and a type family I'g : g — U with a
chosen basepoint yo(v) : [g(7y) for each v : '

A type A in context I is a family Ag : g — U and family
A (v:Tg) = Te(y) — As(y) - U

with a chosen basepoint ag(7y, a) : Ae(y,70(7), a) for each v : '
and a: Ag(7).

A Toy Model: Families of Pointed Types

Definition
A context I is a type ['g and a type family I'g : g — U with a
chosen basepoint yo(v) : [g(7y) for each v : '
A type A in context I is a family Ag : g — U and family
A (v:Tg) = Te(y) — As(y) - U

with a chosen basepoint ag(7y, a) : Ae(y,70(7), a) for each v : '
and a: Ag(7).

(This was one of Ulrik's ‘toy models’ of cohesion)

Goal:

Add type formers that capture some of the additional structure in
these models.

Underlying Space

For every type A there should be a type hA that deletes the
spectral information.

0
T

Underlying Space

For every type A there should be a type hA that deletes the
spectral information.

VA
il

This f is an idempotent monad and comonad that is adjoint to
itself.

Like Mike's Spatial Type Theory, but with § =b.

Recall: Spatial Type Theory

b is a lex idempotent comonad, f is an idempotent monad, and
b - f.

We put in a judgemental version of b and have the type formers
interact with it.

AlTFa:A corresponds to a:bAxTI — A

Recall: Spatial Type Theory

b is a lex idempotent comonad, f is an idempotent monad, and
b - f.

We put in a judgemental version of b and have the type formers
interact with it.

AlTFa:A corresponds to a:bAxTI — A

VAR-CRISP
Ax:AAN|TEx:A

corresponds to
W(AXxAx A)xT —=bhA— A

Recall: Spatial Type Theory

b is a lex idempotent comonad, f is an idempotent monad, and
b - f.

We put in a judgemental version of b and have the type formers
interact with it.

AlTFa:A corresponds to a:bAxTI — A

VAR-CRISP

Ax:AAN|TEx:A
corresponds to
W(AXxAx A)xT —=bhA— A

Al-Fa:A
b-INTRO ——————
A|THEE DA
corresponds to

bA x T —bhA — bhA — HA

The Unit?

In spatial type theory, the counit is invisible: there was an
admissible rule

A|lx:AlTEb:B

A x:A|lT+b:B

The Unit?

In spatial type theory, the counit is invisible: there was an
admissible rule

A|lx:AlTEb:B
A x:A|lT+b:B
With f we have a dilemma: there is both a unit A — A and a
counit §A — A, the round trip on A is not the identity.
Ax:A|TEb: B
A|x:ATFb:B

We choose to make the counit explicit.

/Zones?

We can’t just divide the context into two zones anymore.

x:Ay:B(x)|z:CFd:D

/Zones?

We can’t just divide the context into two zones anymore.
x:Ay:B(x)|z:CFd:D
What if we want to precompose with the unit on x : A only?

y:B(x)|x:Az:Ctd:D

Zeroed Variables

Metx MOF A type
Mx%: A ctx

Fx%:ATMEX: A Fox: AT EX0: A

% denotes an operation that zeroes all the variables in T,

Zeroed Variables

Metx MOF A type
X% A ctx

Fx%:ATMEX: A Fox: AT EX0: A
% denotes an operation that zeroes all the variables in T,

Mx:AT-b:B
COUNIT — — — — — o
r, x° DA, r'[xo/x] = b[xo/x] B[XO/X]

rx°:AT-b:B
UNIT ———— — ——— J—
Mx:Al'+-b:B

Rules for

Mk A type
§-FORM
I+ BA type
Mra:A Fr-a:gA
-INTRO 7 B-ELIM
a'gA MN=a,: A
ahh =a n= nohu

These are the f-style rules. The b-style rules are derivable!

1 and Dependency

A context
x: A y?: B(x%),z: C(x,y°),w?: D(xy°, 2%

corresponds in the model to

Smash Product

For two types A and B there should be a type A® B
corresponding to the ‘external smash product’.

U0 Dl

| | —

> o> (=)

Smash Product

For two types A and B there should be a type A® B
corresponding to the ‘external smash product’.

U0 Dl

A AT

This is a symmetric monoidal product with no additional structural
rules.

Bunched Contexts

We can take a cue from ‘bunched logics’, where there are two ways
of combining contexts, an ordinary cartesian one and a linear one.

M ctx 5 ctx M1 ctx 5 ctx
|_1, [ctx (I‘l)(l'g) ctx

For the comma only, we have weakening and contraction as
normal.

Bunched Contexts

A typical context:

x:A(y:B)(z:C,(p:P)(g:Q)),w:D

Bunched Contexts

A typical context:
x:A(y:B)z:C.(p: P)q: Q),w:D

Or as a tree:

Simple Smash

A type B type

®-FORM
A® B type

Simple Smash

A type B type

®-FORM
A® B type

QFa: A Q+b:B

®-INTRO
(QQ)Favb: Ao B

Simple Smash

A type B type

®-FORM
A® B type

QFa: A QFb:B
(QQ)Favb: Ao B

®-INTRO

M{(x:A)(y:B)}tFc:C
AFs:A®B

®-ELIM
M{A}Fletx®y =sinc: C

Smash and Dependency

When does a ‘dependent external smash” A ® B make sense?

Smash and Dependency

When does a ‘dependent external smash’ A ® B make sense?
Recall: A type A in context I is a family Ag : g — U and family
Ac:(v:Tg) = Te(y) = Ag(y) = U

with a chosen basepoint ag(7, a) : Ae(7v,70(7), a) for each v : '
and a: Ag(7y).

Smash and Dependency

When does a ‘dependent external smash” A ® B make sense?

Recall: A type A in context I is a family Ag : g — U and family
Ac:(v:Tg) = Te(y) = Ag(y) = U

with a chosen basepoint ag(7, a) : Ae(7v,70(7), a) for each v : '
and a: Ag(7y).

We can only do it when the fibers of A and B don't depend on .

Smash and Dependency

We will be allowed to form contexts like:

x:A(y: B(XO))(Z : C(xo,yo)), w: D(x,y,z)

Smash and Dependency

We will be allowed to form contexts like:

x:Ag, «-y:Bg(x0), < z:Ca(x0y°%), <« w:Dg(x0y° 2%

Dependent Smash

The judgemental ‘context smash’.

M Q tele Ok Q tele
[Q tele MLQFQ tele .00+ Q' tele

r,Q ctx MEQ,Q tele M (Q)(Q) tele

Dependent Smash

The judgemental ‘context smash’.

= Q tele
[Q tele MQFQ tele
r,Q ctx M= Q,Q tele

A type that internalises it:

Ok Q tele
0.Q% Q tele
M E(Q)(Q) tele

Ok A type 0. x%: A%+ B type

®-FORM

M= @(XO:A) B type

Dependent Smash

The judgemental ‘context smash’.

M Q tele Ok Q tele
[Q tele MLQFQ tele .00+ Q' tele
r,Q ctx MEQ,Q tele M (Q)(Q) tele

A type that internalises it:

Ok A type 0. x%: A%+ B type
M= @(XO:A) B type

®-FORM

0,Qa°%Mk+a:A 10,00, Mk b: B[a%/x°]
®-INTRO

F(QQ), M -a®@b: Q. B

Extras

Also rules for:
» The monoidal unit S.
(A bit of a pain! The unitor isomorphism has to be built into
several of the other rules.)

Extras

Also rules for:

» The monoidal unit S.
(A bit of a pain! The unitor isomorphism has to be built into

several of the other rules.)
Dependent ‘linear hom' types A — B, right adjoint to — ® A.

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write
(x: A)y : B(x%),z: C(x,y),w®: D(x°y°,2°)

as
X A,y : B(X),Z: C(Xa)/)aw : D(X,y,Z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write
(x: A)(y - B(x")),z: Cx,y),w® : D(x°,y°, 2%)
as
x: Ay :B(x),z: C(x,y),w:D(x,y,z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.
In ®-intro, the two sides must have disjoint colours: a ® b.

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write
(x: A)y : B(x%),z: C(x,y),w®: D(x°y°,2°)

as
X A,y : B(X),Z: C(Xa)/)aw : D(X,y,Z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.
In ®-intro, the two sides must have disjoint colours: a ® b.
In ®-elim, we create two new colours that sum to the colour of the
target:

let x®y = pinc

Eg: Uniqueness principle for ®

Proposition
Suppose A and B are types. If C: A® B — U is a type family and
f: H(p:A®B) C(p), then for any p : A® B we have

(let x® y = pin f(x @) = £(p)

Eg: Uniqueness principle for ®

Proposition
Suppose A and B are types. If C: A® B — U is a type family and
f: H(p:A®B) C(p), then for any p : A® B we have

(letx®y =pinf(x®y))=rf(p)

Proof.
Let P: A® B — U denote the type family

P(p) = (let x @ y = pin f(x 2 y)) = F(p)

We wish to find an element of [[, x5y P(P)-

Eg: Uniqueness principle for ®

Proposition
Suppose A and B are types. If C: A® B — U is a type family and
f: H(p:A®B) C(p), then for any p : A® B we have

(letx®y =pinf(x®y))=rf(p)

Proof.
Let P: A® B — U denote the type family

P(p) = (let x @ y = pin f(x 2 y)) = F(p)

We wish to find an element of [](, 455y P(p). By ®-induction we
may assume p = x’ ® y’. Our goal is now

(letx®y=x@yinf(x®y))=Ff(xay)

Which by the S-rule reduces to f(x' @ y') = f(x' @ y'). O

Non-Eg: A diagonal map for ®

We cannot define an interesting A : A— A® A in general.

Non-Eg: A diagonal map for ®

We cannot define an interesting A : A— A® A in general.

Given a: A, forming a® a: A® A is not allowed: the two inputs to
®-intro do not have disjoint colours.

Non-Eg: A diagonal map for ®

We cannot define an interesting A : A— A® A in general.

Given a: A, forming a® a: A® A is not allowed: the two inputs to
®-intro do not have disjoint colours.

But we can form a® a: A® A, the diagonal map on the base and
constantly zero in the fibers.

Eg: Base of @) is >

Proposition

h@(X:A) B(X) = Z(u:hA) hB(Uh)

Eg: Base of) is >

Proposition

h@(x:A) B(X) = Z(u:hA) hB(Uh)

Proof.

Given w : ff Q) x.a) B(x) we have a term wy : @ x.a) B(x).
Induction on this gives x : A and y : B(x), from which we can
produce (thyu) : E(u:hA) hB(Uh)

Eg: Base of) is >

Proposition
h@(x:A) B(X) = Z(u:hA) hB(Uh)
Proof.

Given w : ff Q) x.a) B(x) we have a term wy : @ x.a) B(x).
Induction on this gives x : A and y : B(x), from which we can

produce (thyu) : Z(u:hA) hB(Uh)

In the other direction, from z: 37,4y 1B(x;) we get pry(z); : A
and pry(z); : B(pri(z)y). These terms are (vacuously) blue and red
respectively so we can form

(pra(2): ® pra(2):)) B(x)
x:A

O

and apply (—)% Now check round trips.

Axioms?

How do we characterise parameterised spectra amongst the
models? Possibilities:

» 1t is S-nullification
> ¥"S — QYIS is an equivalence

> Relate S to the stable homotopy groups of ordinary spheres

References |

Joyal, André (2008). Notes on logoi. URL:
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf.

van Doorn, Floris (2018). “On the formalization of higher inductive types
and synthetic homotopy theory”. In: arXiv preprint arXiv:1808.10690.

http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf

	Spectra and Parameterised Spectra
	The `Underlying Space' Modality
	The Smash Product
	Working Informally
	References

