
A Type Theory for Parameterised Spectra

Mitchell Riley
Dan Licata

jww. Eric Finster

Wesleyan University

8th March 2020

Spectra and Parameterised Spectra

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N→ U?
together with pointed maps αn : En →? ΩEn+1.

A spectrum is a prespectrum such that the αn are pointed
equivalences.

Example

Each abelian group G yields a spectrum with En :≡ K (G , n), the
‘Eilenberg-MacLane spaces’.

Example

The zero spectrum with En :≡ 1.

Example

The sphere prespectrum has En :≡ Sn, with αn the transpose of
ΣSn →? S

n+1

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N→ U?
together with pointed maps αn : En →? ΩEn+1.

A spectrum is a prespectrum such that the αn are pointed
equivalences.

Example

Each abelian group G yields a spectrum with En :≡ K (G , n), the
‘Eilenberg-MacLane spaces’.

Example

The zero spectrum with En :≡ 1.

Example

The sphere prespectrum has En :≡ Sn, with αn the transpose of
ΣSn →? S

n+1

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N→ U?
together with pointed maps αn : En →? ΩEn+1.

A spectrum is a prespectrum such that the αn are pointed
equivalences.

Example

Each abelian group G yields a spectrum with En :≡ K (G , n), the
‘Eilenberg-MacLane spaces’.

Example

The zero spectrum with En :≡ 1.

Example

The sphere prespectrum has En :≡ Sn, with αn the transpose of
ΣSn →? S

n+1

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N→ U?
together with pointed maps αn : En →? ΩEn+1.

A spectrum is a prespectrum such that the αn are pointed
equivalences.

Example

Each abelian group G yields a spectrum with En :≡ K (G , n), the
‘Eilenberg-MacLane spaces’.

Example

The zero spectrum with En :≡ 1.

Example

The sphere prespectrum has En :≡ Sn, with αn the transpose of
ΣSn →? S

n+1

Spectra

Definition
A prespectrum E is a sequence of pointed types E : N→ U?
together with pointed maps αn : En →? ΩEn+1.

A spectrum is a prespectrum such that the αn are pointed
equivalences.

Example

Each abelian group G yields a spectrum with En :≡ K (G , n), the
‘Eilenberg-MacLane spaces’.

Example

The zero spectrum with En :≡ 1.

Example

The sphere prespectrum has En :≡ Sn, with αn the transpose of
ΣSn →? S

n+1

Cohomology and Homology

Definition
Given a spectrum E and a pointed type X ,

I the cohomology of X with coefficients in E is

En(X) :≡ π0(X →? En)

I the homology of X with coefficients in E is

En(X) :≡ colim
k→∞

πn+k(X ∧ Ek)

where A ∧ B := (A× B)/(A ∨ B) is the smash product.

Cohomology and Homology

Definition
Given a spectrum E and a pointed type X ,

I the cohomology of X with coefficients in E is

En(X) :≡ π0(X →? En)

I the homology of X with coefficients in E is

En(X) :≡ colim
k→∞

πn+k(X ∧ Ek)

where A ∧ B := (A× B)/(A ∨ B) is the smash product.

Problem

Working with the smash product in HoTT is a serious endeavour!

There ought to be a smash product of two spectra.
(But how? Describe ‘highly structured spectra’ internally? Yow!)

Instead: Model type theory in a topos where spectra already exist.

Problem

Working with the smash product in HoTT is a serious endeavour!

There ought to be a smash product of two spectra.
(But how? Describe ‘highly structured spectra’ internally? Yow!)

Instead: Model type theory in a topos where spectra already exist.

Problem

Working with the smash product in HoTT is a serious endeavour!

There ought to be a smash product of two spectra.
(But how? Describe ‘highly structured spectra’ internally? Yow!)

Instead: Model type theory in a topos where spectra already exist.

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

Parameterised Spectra

Definition
A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008)

The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

So is a model of HoTT.

A Toy Model: Families of Pointed Types

Definition
A context Γ is a type ΓB and a type family ΓE : ΓB → U with a
chosen basepoint γ0(γ) : ΓE (γ) for each γ : ΓB

A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

ΓE , AE , BE ,

ΓB , AB , BB ,

(This was one of Ulrik’s ‘toy models’ of cohesion)

A Toy Model: Families of Pointed Types

Definition
A context Γ is a type ΓB and a type family ΓE : ΓB → U with a
chosen basepoint γ0(γ) : ΓE (γ) for each γ : ΓB

A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

ΓE , AE , BE ,

ΓB , AB , BB ,

(This was one of Ulrik’s ‘toy models’ of cohesion)

A Toy Model: Families of Pointed Types

Definition
A context Γ is a type ΓB and a type family ΓE : ΓB → U with a
chosen basepoint γ0(γ) : ΓE (γ) for each γ : ΓB

A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

ΓE , AE , BE ,

ΓB , AB , BB ,

(This was one of Ulrik’s ‘toy models’ of cohesion)

Goal:

Add type formers that capture some of the additional structure in
these models.

The ‘Underlying Space’ Modality

Underlying Space

For every type A there should be a type \A that deletes the
spectral information.

This \ is an idempotent monad and comonad that is adjoint to
itself.

Like Mike’s Spatial Type Theory, but with] ≡ [.

Underlying Space

For every type A there should be a type \A that deletes the
spectral information.

This \ is an idempotent monad and comonad that is adjoint to
itself.

Like Mike’s Spatial Type Theory, but with] ≡ [.

Recall: Spatial Type Theory

[is a lex idempotent comonad,] is an idempotent monad, and
[a].
We put in a judgemental version of [and have the type formers
interact with it.

∆ | Γ ` a : A corresponds to a : [∆× Γ→ A

var-crisp
∆, x :: A,∆′ | Γ ` x : A

corresponds to

[(∆× A×∆′)× Γ→ [A→ A

[-intro
∆ | · ` a : A

∆ | Γ ` a[: [A

corresponds to

[∆× Γ→ [∆→ [[∆→ [A

Recall: Spatial Type Theory

[is a lex idempotent comonad,] is an idempotent monad, and
[a].
We put in a judgemental version of [and have the type formers
interact with it.

∆ | Γ ` a : A corresponds to a : [∆× Γ→ A

var-crisp
∆, x :: A,∆′ | Γ ` x : A

corresponds to

[(∆× A×∆′)× Γ→ [A→ A

[-intro
∆ | · ` a : A

∆ | Γ ` a[: [A

corresponds to

[∆× Γ→ [∆→ [[∆→ [A

Recall: Spatial Type Theory

[is a lex idempotent comonad,] is an idempotent monad, and
[a].
We put in a judgemental version of [and have the type formers
interact with it.

∆ | Γ ` a : A corresponds to a : [∆× Γ→ A

var-crisp
∆, x :: A,∆′ | Γ ` x : A

corresponds to

[(∆× A×∆′)× Γ→ [A→ A

[-intro
∆ | · ` a : A

∆ | Γ ` a[: [A

corresponds to

[∆× Γ→ [∆→ [[∆→ [A

The Unit?

In spatial type theory, the counit is invisible: there was an
admissible rule

counit
∆ | x : A, Γ ` b : B

∆, x : A | Γ ` b : B
−−−−−−−−−−

With \ we have a dilemma: there is both a unit A→ \A and a
counit \A→ A, the round trip on A is not the identity.

unit?
∆, x : A | Γ ` b : B

∆ | x : A, Γ ` b : B
−−−−−−−−−−

We choose to make the counit explicit.

The Unit?

In spatial type theory, the counit is invisible: there was an
admissible rule

counit
∆ | x : A, Γ ` b : B

∆, x : A | Γ ` b : B
−−−−−−−−−−

With \ we have a dilemma: there is both a unit A→ \A and a
counit \A→ A, the round trip on A is not the identity.

unit?
∆, x : A | Γ ` b : B

∆ | x : A, Γ ` b : B
−−−−−−−−−−

We choose to make the counit explicit.

Zones?

We can’t just divide the context into two zones anymore.

x : A, y : B(x) | z : C ` d : D

What if we want to precompose with the unit on x : A only?

y : B(x) | x : A, z : C ` d : D

Zones?

We can’t just divide the context into two zones anymore.

x : A, y : B(x) | z : C ` d : D

What if we want to precompose with the unit on x : A only?

y : B(x) | x : A, z : C ` d : D

Zeroed Variables

Γ ctx Γ0 ` A type

Γ, x0 : A ctx

Γ, x0 : A, Γ′ ` x0 : A Γ, x : A, Γ′ ` x0 : A0

Γ0 denotes an operation that zeroes all the variables in Γ.

counit
Γ, x : A, Γ′ ` b : B

Γ, x0 : A, Γ′[x0/x] ` b[x0/x] : B[x0/x]
−−−−−−−−−−−−−−−−−−−−−

unit
Γ, x0 : A, Γ′ ` b : B

Γ, x : A, Γ′ ` b : B
−−−−−−−−−−−

Zeroed Variables

Γ ctx Γ0 ` A type

Γ, x0 : A ctx

Γ, x0 : A, Γ′ ` x0 : A Γ, x : A, Γ′ ` x0 : A0

Γ0 denotes an operation that zeroes all the variables in Γ.

counit
Γ, x : A, Γ′ ` b : B

Γ, x0 : A, Γ′[x0/x] ` b[x0/x] : B[x0/x]
−−−−−−−−−−−−−−−−−−−−−

unit
Γ, x0 : A, Γ′ ` b : B

Γ, x : A, Γ′ ` b : B
−−−−−−−−−−−

Rules for \

\-form
Γ0 ` A type

Γ ` \A type

\-intro
Γ0 ` a : A

Γ ` a\ : \A
\-elim

Γ ` a : \A

Γ ` a\ : A

a\\ ≡ a n ≡ n0\
\

These are the]-style rules. The [-style rules are derivable!

\ and Dependency

A context

x : A, y0 : B(x0), z : C (x , y0),w0 : D(x0, y0, z0)

corresponds in the model to

x : AE , z : CE (x)

x0 : AB , y0 : BB(x0), z0 : CB(x0, y0), w0 : DB(x0, y0, z0)

The Smash Product

Smash Product

For two types A and B there should be a type A⊗ B
corresponding to the ‘external smash product’.

⊗

This is a symmetric monoidal product with no additional structural
rules.

Smash Product

For two types A and B there should be a type A⊗ B
corresponding to the ‘external smash product’.

⊗

This is a symmetric monoidal product with no additional structural
rules.

Bunched Contexts

We can take a cue from ‘bunched logics’, where there are two ways
of combining contexts, an ordinary cartesian one and a linear one.

Γ1 ctx Γ2 ctx

Γ1, Γ2 ctx

Γ1 ctx Γ2 ctx

(Γ1)(Γ2) ctx

For the comma only, we have weakening and contraction as
normal.

Bunched Contexts

A typical context:

x : A, (y : B)(z : C , (p : P)(q : Q)),w : D

Or as a tree:

×

x : A ⊗

y : B ×

z : C ⊗

p : P q : Q

w : D

Bunched Contexts

A typical context:

x : A, (y : B)(z : C , (p : P)(q : Q)),w : D

Or as a tree:

×

x : A ⊗

y : B ×

z : C ⊗

p : P q : Q

w : D

Simple Smash

⊗-form
A type B type

A⊗ B type

⊗-intro
Ω ` a : A Ω′ ` b : B

(Ω)(Ω′) ` a⊗ b : A⊗ B

⊗-elim

Γ{(x : A)(y : B)} ` c : C
∆ ` s : A⊗ B

Γ{∆} ` let x ⊗ y = s in c : C

Simple Smash

⊗-form
A type B type

A⊗ B type

⊗-intro
Ω ` a : A Ω′ ` b : B

(Ω)(Ω′) ` a⊗ b : A⊗ B

⊗-elim

Γ{(x : A)(y : B)} ` c : C
∆ ` s : A⊗ B

Γ{∆} ` let x ⊗ y = s in c : C

Simple Smash

⊗-form
A type B type

A⊗ B type

⊗-intro
Ω ` a : A Ω′ ` b : B

(Ω)(Ω′) ` a⊗ b : A⊗ B

⊗-elim

Γ{(x : A)(y : B)} ` c : C
∆ ` s : A⊗ B

Γ{∆} ` let x ⊗ y = s in c : C

Smash and Dependency

When does a ‘dependent external smash’ A⊗ B make sense?

Recall: A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

We can only do it when the fibers of A and B don’t depend on ΓE .

Smash and Dependency

When does a ‘dependent external smash’ A⊗ B make sense?

Recall: A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

We can only do it when the fibers of A and B don’t depend on ΓE .

Smash and Dependency

When does a ‘dependent external smash’ A⊗ B make sense?

Recall: A type A in context Γ is a family AB : ΓB → U and family

AE : (γ : ΓB)→ ΓE (γ)→ AB(γ)→ U

with a chosen basepoint a0(γ, a) : AE (γ, γ0(γ), a) for each γ : ΓB

and a : AB(γ).

We can only do it when the fibers of A and B don’t depend on ΓE .

Smash and Dependency

We will be allowed to form contexts like:

x : A, (y : B(x0))(z : C (x0, y0)),w : D(x , y , z)

x : AE , (y : BE z : CE), w : DE (x , y ⊗ z)

x : AB , y : BB(x0), z : CB(x0, y0), w : DB(x0, y0, z0)

⊗

Smash and Dependency

We will be allowed to form contexts like:

x : A, (y : B(x0))(z : C (x0, y0)),w : D(x , y , z)

x : AE , (y : BE z : CE), w : DE (x , y ⊗ z)

x : AB , y : BB(x0), z : CB(x0, y0), w : DB(x0, y0, z0)

⊗

Dependent Smash

The judgemental ‘context smash’.

Γ ` Ω tele

Γ,Ω ctx

Γ ` Ω tele
Γ,Ω ` Ω′ tele

Γ ` Ω,Ω′ tele

Γ0 ` Ω tele

Γ0,Ω0 ` Ω′ tele

Γ ` (Ω)(Ω′) tele

A type that internalises it:

⊗-form
Γ0 ` A type Γ0, x0 : A0 ` B type

Γ ` ©∑ (x0:A) B type

⊗-intro
Γ0,Ω,Ω′0, Γ′0 ` a : A Γ0,Ω0,Ω′, Γ′0 ` b : B[a0/x0]

Γ, (Ω)(Ω′), Γ′ ` a⊗ b :©∑ (x0:A) B

. . .

Dependent Smash

The judgemental ‘context smash’.

Γ ` Ω tele

Γ,Ω ctx

Γ ` Ω tele
Γ,Ω ` Ω′ tele

Γ ` Ω,Ω′ tele

Γ0 ` Ω tele

Γ0,Ω0 ` Ω′ tele

Γ ` (Ω)(Ω′) tele

A type that internalises it:

⊗-form
Γ0 ` A type Γ0, x0 : A0 ` B type

Γ ` ©∑ (x0:A) B type

⊗-intro
Γ0,Ω,Ω′0, Γ′0 ` a : A Γ0,Ω0,Ω′, Γ′0 ` b : B[a0/x0]

Γ, (Ω)(Ω′), Γ′ ` a⊗ b :©∑ (x0:A) B

. . .

Dependent Smash

The judgemental ‘context smash’.

Γ ` Ω tele

Γ,Ω ctx

Γ ` Ω tele
Γ,Ω ` Ω′ tele

Γ ` Ω,Ω′ tele

Γ0 ` Ω tele

Γ0,Ω0 ` Ω′ tele

Γ ` (Ω)(Ω′) tele

A type that internalises it:

⊗-form
Γ0 ` A type Γ0, x0 : A0 ` B type

Γ ` ©∑ (x0:A) B type

⊗-intro
Γ0,Ω,Ω′0, Γ′0 ` a : A Γ0,Ω0,Ω′, Γ′0 ` b : B[a0/x0]

Γ, (Ω)(Ω′), Γ′ ` a⊗ b :©∑ (x0:A) B

. . .

Extras

Also rules for:

I The monoidal unit S.
(A bit of a pain! The unitor isomorphism has to be built into
several of the other rules.)

I Dependent ‘linear hom’ types A (B, right adjoint to −⊗ A.

Extras

Also rules for:

I The monoidal unit S.
(A bit of a pain! The unitor isomorphism has to be built into
several of the other rules.)

I Dependent ‘linear hom’ types A (B, right adjoint to −⊗ A.

Working Informally

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write

(x : A)(y : B(x0)), z : C (x , y),w0 : D(x0, y0, z0)

as
x : A, y : B(x), z : C (x , y),w : D(x , y , z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.
In ⊗-intro, the two sides must have disjoint colours: a⊗ b.
In ⊗-elim, we create two new colours that sum to the colour of the
target:

let x ⊗ y = p in c

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write

(x : A)(y : B(x0)), z : C (x , y),w0 : D(x0, y0, z0)

as
x : A, y : B(x), z : C (x , y),w : D(x , y , z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.

In ⊗-intro, the two sides must have disjoint colours: a⊗ b.
In ⊗-elim, we create two new colours that sum to the colour of the
target:

let x ⊗ y = p in c

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write

(x : A)(y : B(x0)), z : C (x , y),w0 : D(x0, y0, z0)

as
x : A, y : B(x), z : C (x , y),w : D(x , y , z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.
In ⊗-intro, the two sides must have disjoint colours: a⊗ b.

In ⊗-elim, we create two new colours that sum to the colour of the
target:

let x ⊗ y = p in c

Working Informally

This type theory would be unusable if we had to constantly keep
track of the shape of the context.

A cute idea: use colours. Write

(x : A)(y : B(x0)), z : C (x , y),w0 : D(x0, y0, z0)

as
x : A, y : B(x), z : C (x , y),w : D(x , y , z)

Zeroed terms are written in black, they do not contribute to the
colour of a term.
In ⊗-intro, the two sides must have disjoint colours: a⊗ b.
In ⊗-elim, we create two new colours that sum to the colour of the
target:

let x ⊗ y = p in c

Eg: Uniqueness principle for ⊗

Proposition

Suppose A and B are types. If C : A⊗ B → U is a type family and
f :

∏
(p:A⊗B) C (p), then for any p : A⊗ B we have

(let x ⊗ y = p in f (x ⊗ y)) = f (p)

Proof.
Let P : A⊗ B → U denote the type family

P(p) :≡ (let x ⊗ y = p in f (x ⊗ y)) = f (p)

We wish to find an element of
∏

(p:A⊗B) P(p). By ⊗-induction we

may assume p ≡ x ′ ⊗ y ′. Our goal is now

(let x ⊗ y = x ′ ⊗ y ′ in f (x ⊗ y)) = f (x ′ ⊗ y ′)

Which by the β-rule reduces to f (x ′ ⊗ y ′) = f (x ′ ⊗ y ′).

Eg: Uniqueness principle for ⊗

Proposition

Suppose A and B are types. If C : A⊗ B → U is a type family and
f :

∏
(p:A⊗B) C (p), then for any p : A⊗ B we have

(let x ⊗ y = p in f (x ⊗ y)) = f (p)

Proof.
Let P : A⊗ B → U denote the type family

P(p) :≡ (let x ⊗ y = p in f (x ⊗ y)) = f (p)

We wish to find an element of
∏

(p:A⊗B) P(p).

By ⊗-induction we

may assume p ≡ x ′ ⊗ y ′. Our goal is now

(let x ⊗ y = x ′ ⊗ y ′ in f (x ⊗ y)) = f (x ′ ⊗ y ′)

Which by the β-rule reduces to f (x ′ ⊗ y ′) = f (x ′ ⊗ y ′).

Eg: Uniqueness principle for ⊗

Proposition

Suppose A and B are types. If C : A⊗ B → U is a type family and
f :

∏
(p:A⊗B) C (p), then for any p : A⊗ B we have

(let x ⊗ y = p in f (x ⊗ y)) = f (p)

Proof.
Let P : A⊗ B → U denote the type family

P(p) :≡ (let x ⊗ y = p in f (x ⊗ y)) = f (p)

We wish to find an element of
∏

(p:A⊗B) P(p). By ⊗-induction we

may assume p ≡ x ′ ⊗ y ′. Our goal is now

(let x ⊗ y = x ′ ⊗ y ′ in f (x ⊗ y)) = f (x ′ ⊗ y ′)

Which by the β-rule reduces to f (x ′ ⊗ y ′) = f (x ′ ⊗ y ′).

Non-Eg: A diagonal map for ⊗

We cannot define an interesting ∆ : A→ A⊗ A in general.

Given a : A, forming a⊗ a : A⊗A is not allowed: the two inputs to
⊗-intro do not have disjoint colours.

But we can form a⊗ a : A⊗ A, the diagonal map on the base and
constantly zero in the fibers.

Non-Eg: A diagonal map for ⊗

We cannot define an interesting ∆ : A→ A⊗ A in general.

Given a : A, forming a⊗ a : A⊗A is not allowed: the two inputs to
⊗-intro do not have disjoint colours.

But we can form a⊗ a : A⊗ A, the diagonal map on the base and
constantly zero in the fibers.

Non-Eg: A diagonal map for ⊗

We cannot define an interesting ∆ : A→ A⊗ A in general.

Given a : A, forming a⊗ a : A⊗A is not allowed: the two inputs to
⊗-intro do not have disjoint colours.

But we can form a⊗ a : A⊗ A, the diagonal map on the base and
constantly zero in the fibers.

Eg: Base of©∑ is
∑

Proposition

\©∑ (x :A) B(x) '
∑

(u:\A) \B(u\)

Proof.
Given w : \©∑ (x :A) B(x) we have a term w \ :©∑ (x :A) B(x).
Induction on this gives x : A and y : B(x), from which we can
produce (x \, y \) :

∑
(u:\A) \B(u\).

In the other direction, from z :
∑

(x :\A) \B(x\) we get pr1(z)\ : A
and pr2(z)\ : B(pr1(z)\). These terms are (vacuously) blue and red
respectively so we can form

(pr1(z)\ ⊗ pr2(z)\) :
∑©
x :A

B(x)

and apply (−)\. Now check round trips.

Eg: Base of©∑ is
∑

Proposition

\©∑ (x :A) B(x) '
∑

(u:\A) \B(u\)

Proof.
Given w : \©∑ (x :A) B(x) we have a term w \ :©∑ (x :A) B(x).
Induction on this gives x : A and y : B(x), from which we can
produce (x \, y \) :

∑
(u:\A) \B(u\).

In the other direction, from z :
∑

(x :\A) \B(x\) we get pr1(z)\ : A
and pr2(z)\ : B(pr1(z)\). These terms are (vacuously) blue and red
respectively so we can form

(pr1(z)\ ⊗ pr2(z)\) :
∑©
x :A

B(x)

and apply (−)\. Now check round trips.

Eg: Base of©∑ is
∑

Proposition

\©∑ (x :A) B(x) '
∑

(u:\A) \B(u\)

Proof.
Given w : \©∑ (x :A) B(x) we have a term w \ :©∑ (x :A) B(x).
Induction on this gives x : A and y : B(x), from which we can
produce (x \, y \) :

∑
(u:\A) \B(u\).

In the other direction, from z :
∑

(x :\A) \B(x\) we get pr1(z)\ : A
and pr2(z)\ : B(pr1(z)\). These terms are (vacuously) blue and red
respectively so we can form

(pr1(z)\ ⊗ pr2(z)\) :
∑©
x :A

B(x)

and apply (−)\. Now check round trips.

Axioms?

How do we characterise parameterised spectra amongst the
models? Possibilities:

I \ is S-nullification

I ΣnS→ ΩΣn+1S is an equivalence

I Relate S to the stable homotopy groups of ordinary spheres

References I

Joyal, André (2008). Notes on logoi. url:
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf.

van Doorn, Floris (2018). “On the formalization of higher inductive types
and synthetic homotopy theory”. In: arXiv preprint arXiv:1808.10690.

http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf

	Spectra and Parameterised Spectra
	The `Underlying Space' Modality
	The Smash Product
	Working Informally
	References

