# Synthetic Spectra via a Monadic and Comonadic Modality

Mitchell Riley<sup>1</sup> jww. Dan Licata<sup>1</sup> Eric Finster<sup>2</sup>

Wesleyan University<sup>1</sup> University of Birmingham<sup>2</sup>

 $18^{\text{th}}$  June 2020

Recall:

### Definition

- A pointed type is a pair of A : Type and a : A.
- A pointed function (A, a) →<sub>\*</sub> (B, b) is a function f : A → B and path p : f(a) = b.

Carrying these paths p through constructions can be tedious.

We might prefer to talk about functions that preserve the point *strictly*. But we cannot arrange this in ordinary type theory.

## Spectra

### Definition

• A prespectrum E is a sequence of pointed types  $E : \mathbb{N} \to \text{Type}_{\star}$  together with pointed maps  $\alpha_n : E_n \to_{\star} \Omega E_{n+1}.$ 

A spectrum is a prespectrum such that the α<sub>n</sub> are pointed equivalences.

### Examples

- ► Each abelian group G yields a spectrum with E<sub>n</sub> := K(G, n), the 'Eilenberg-MacLane spaces'.
- The zero spectrum with  $E_n :\equiv 1$ .
- The sphere prespectrum has  $E_n :\equiv S^n$ , with  $\alpha_n$  the transpose of  $\Sigma S^n \to_{\star} S^{n+1}$

### Definition

A map of spectra  $f : E \to F$  is a sequence of pointed maps  $f_n : E_n \to_* F_n$  that commute with the structure maps of E and F.

Not many operations on spectra have been defined in type theory!

Can we find a model where functions automatically respect the point?

Pointed spaces or spectra don't form a good model of type theory.

Space indexed families of pointed spaces/spectra do!

## Parameterised Pointed Spaces

### Definition

A *parameterised pointed space* is a space-indexed family of pointed spaces.



#### Theorem

The  $\infty\text{-category}$  of parameterised pointed spaces,  $P\mathcal{S}_{\star},$  is an  $\infty\text{-topos}.$ 

### Definition

A parameterised spectrum is a space-indexed family of spectra.



Theorem (Joyal 2008, jww. Biedermann) The  $\infty$ -category of parameterised spectra, PSpec, is an  $\infty$ -topos.

#### HoTT

Types as  $\infty$ -groupoids.

#### In This Talk

Types as  $\infty$ -groupoids indexing a family of pointed things.

### Spatial Type Theory (Shulman 2018)

Types as  $\infty$ -groupoids equipped with additional topological structure.

# Underlying Space

For every parameterised family, there is an operation that forgets the family.



And given a space, we can equip it with the trivial family.



# Underlying Space

As a diagram of categories:

$$\begin{array}{c} PC \\ 0 \\ \uparrow \downarrow \\ S \end{array}$$

Let  $\natural$  be the round-trip on *PC*, this is an idempotent monad and comonad that is adjoint to itself.

#### Goal:

We want an extension of HoTT with a type former  $\natural$  that captures this situation.

### Review: Spatial Type Theory

# The \$ Modality

Axioms

A Synthetic Smash Product

## Review: Spatial Type Theory

The b Modality

Axioms

A Synthetic Smash Product

# Spatial Type Theory

The  $b/\sharp$  fragment of cohesive type theory (Shulman 2018).

The intended models are 'local toposes':

$$\begin{array}{c} \mathcal{E} \\ \text{Disc} \stackrel{\frown}{\vdash} \stackrel{\frown}{\downarrow} \stackrel{\frown}{\Gamma} \stackrel{\frown}{\vdash} \text{CoDisc} \\ \mathcal{S} \end{array}$$

with the outer functors fully faithful.

- ▷ := Disc ∘ Γ is a lex idempotent comonad,
- $\sharp := \operatorname{CoDisc} \circ \Gamma$  is an idempotent monad,

• with  $\flat \dashv \sharp$ .

We want  $\flat$  and  $\ddagger$  as unary type formers in our theory.

Following the pattern of adjoint logic, we put in a judgemental version of  $\flat$  and have the type formers interact with it.

 $\Delta \mid \Gamma \vdash a : A$  corresponds to  $a : \flat \Delta \times \Gamma \rightarrow A$ 

We need two variable rules:

VAR

VAR-CRISP

 $\Delta \mid \Gamma, x : A, \Gamma' \vdash x : A \qquad \quad \Delta, x :: A, \Delta' \mid \Gamma \vdash x : A$ 

The second rule comes from the counit  $\flat A \rightarrow A$ .

The unary type former  $\sharp$  is supposed to be right adjoint to  $\flat$ , so we make it adjoint to the judgemental context  $\flat$ .

What does  $\flat$  do to contexts? Recall  $\Delta \mid \Gamma$  means  $\flat \Delta \times \Gamma$ .

$$\flat(\flat\Delta\times\Gamma)\cong\flat\flat\Delta\times\flat\Gamma\cong\flat\Delta\times\flat\Gamma\cong\flat(\Delta\times\Gamma)$$

So applying  $\flat$  to  $\Delta \mid \mathsf{\Gamma}$  gives  $\Delta, \mathsf{\Gamma} \mid \cdot.$ 

| ‡-FORM                                    | ‡-INTRO                                                     |  |  |
|-------------------------------------------|-------------------------------------------------------------|--|--|
| $\Delta, F \mid \cdot dash A$ type        | $\Delta, \Gamma \mid \cdot \vdash a : A$                    |  |  |
| $\Delta \mid \Gamma \vdash \sharp A$ type | $\overline{\Delta \mid \Gamma \vdash a^{\sharp}: \sharp A}$ |  |  |

## Figuring Out # Elim

First go:

$$\frac{\mathbb{A} - \text{ELIM-V1?}}{\Delta \mid \Gamma \vdash s : \#A}$$
$$\frac{\Delta \mid \Gamma \vdash s : \#A}{\Delta, \Gamma \mid \cdot \vdash s_{\#} : A}$$

Going from the conclusion to the premise, demoting  $\Gamma$  only makes it more difficult to use:

 $\frac{\Delta \mid \cdot \vdash s : \sharp A}{\Delta \mid \cdot \vdash s_{\sharp} : A}$ 

Context in the conclusion should be fully general:

 $\frac{\Delta \mid \cdot \vdash s : \sharp A}{\Delta \mid \Gamma \vdash s_{\sharp} : A}$ 

Review: Spatial Type Theory

# The \$ Modality

Axioms

A Synthetic Smash Product

# Almost Spatial Type Theory

Comparing the setting of spatial type theory with ours:

$$\begin{array}{ccc}
\mathcal{E} & P\mathcal{C} \\
\text{Disc} & & \downarrow \Gamma \rightarrow \uparrow \text{CoDisc} & 0 & \uparrow \downarrow \rightarrow \uparrow 0 \\
\mathcal{S} & \mathcal{S} & \mathcal{S}
\end{array}$$

We could use Spatial Type Theory to study our setting on the right, if we impose that  $\flat A \rightarrow A \rightarrow \sharp A$  is always an equivalence.

But transport across equivalence this would need to occur everywhere. We want a version that captures such a modality directly.

## The Roundtrip

- The primary difficulty is that the structure maps include a non-trivial round trip  $A \rightarrow \natural A \rightarrow A$ .
- In Spatial Type Theory the counit was *silent*, not annotated in the term.

### $\Delta, x :: A, \Delta' \mid \Gamma \vdash x : A$

At least one of the unit or counit has to be explicit.

We chose to make the counit *explicit*, and the unit silent.

## Variables

Our contexts again have two zones, where  $\Delta \mid \Gamma$  morally means  $\natural \Delta \times \Gamma.$ 

VAR-ZERO

 $\overline{\Delta \mid \Gamma, x : A, \Gamma' \vdash x : A} \qquad \overline{\Delta, \underline{x} :: A, \Delta' \mid \Gamma \vdash \underline{x} : A}$ 

VAR-ROUNDTRIP

 $\Delta \mid \Gamma, x : A, \Gamma' \vdash \underline{x} : \underline{A}$ 

- VAR-ZERO corresponds to a use of the counit,
- VAR-ROUNDTRIP corresponds to the unit followed by the counit.
- With this convention, whenever x : A is used via ↓A, it is marked.

What does  $\natural$  do to contexts? Like last time:

$$atural(
atural \Delta \times \Gamma) \cong 
atural \Delta \times 
atural \Gamma \cong 
atural \Delta \times 
atural \Gamma \cong 
atural (\Delta \times \Gamma)$$

But we can't write  $\Delta, \Gamma \mid \cdot$  exactly, because the counit is not silent! The types in  $\Gamma$  have to have all uses of other variables from  $\Gamma$  marked.

Let's write  $\Delta$ ,  $0\Gamma \mid \cdot$  for this.

E.g.:  $\underline{x} :: A \mid y : B, z : C(y)$  becomes  $\underline{x} :: A, \underline{y} :: B, \underline{z} :: C(\underline{y}) \mid \cdot$ .

Precomposition with the structural rules can be extended to terms:

When using x : A via the round-trip, also have to round-trip the type:

VAR-ROUNDTRIP

 $\overline{\Delta \mid \Gamma, x : A, \Gamma' \vdash \underline{x} : \underline{A}}$ 

# Figuring Out atural

$$\frac{\Delta, 0\Gamma \mid \cdot \vdash A \text{ type}}{\Delta \mid \Gamma \vdash \natural A \text{ type}} \qquad \qquad \frac{\Delta, 0\Gamma \mid \cdot \vdash a : A}{\Delta \mid \Gamma \vdash a^{\natural} : \natural A}$$

$$\frac{\beta \text{-ELIM-V1?}}{\Delta \mid \Gamma \vdash a : \natural A}$$

$$\frac{\beta \text{-ELIM-V1?}}{\Delta, 0\Gamma \mid \cdot \vdash a : \natural A}$$

Here we don't have to drop  $\Gamma$  as we did with  $\sharp$ , instead we can precompose the result with the unit:

 $\frac{\Delta \mid \Gamma \vdash a : \natural A}{\Delta \mid \Gamma \vdash a_{\natural} : A}$ 

 $\frac{\Delta, \mathsf{OF} \mid \cdot \vdash A \mathsf{ type}}{\Delta \mid \Gamma \vdash \natural A \mathsf{ type}}$ 

| β-INTRO                                               | β-ELIM                                                  |  |
|-------------------------------------------------------|---------------------------------------------------------|--|
| $\Delta,$ 0Г $ \cdot \vdash a:A$                      | $\Delta \mid \Gamma \vdash v : \natural A$              |  |
| $\Delta \mid \Gamma \vdash a^{\natural} : \natural A$ | $\overline{\Delta \mid \Gamma \vdash v_{\natural} : A}$ |  |

| β-BETA                                                              | q-ETA                                                                                            |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\Delta, 0\Gamma \mid \cdot dash a : A$                             | $\Delta \mid \Gamma \vdash v: \natural A$                                                        |
| $\overline{\Delta \mid \Gamma dash a^{arphi}{}_{arphi} \equiv a:A}$ | $\overline{\Delta \mid \Gamma \vdash v \equiv \underline{v}_{\natural}^{\natural} : \natural A}$ |

# Properties of a

- ▶ 👌 is also comonadic, like ♭
- $\natural$  is self-adjoint:  $\natural(\natural A \to B) \simeq \natural(A \to \natural B)$

### Definition

- A type X is a *space* if  $(\lambda x.\underline{x}^{\natural}) : X \to \natural \underline{X}$  is an equivalence.
- A type *E* is a *spectrum* if  $\natural \underline{E}$  is contractible.

(To be more model agnostic you might call these 'modal' and 'reduced')

# Using atural

### Proposition

For any A, the type atural A is a space.

#### Proof.

We have to show that  $(\lambda v.\underline{v}^{\natural}) : \natural \underline{A} \to \natural \natural \underline{A}$  is an equivalence. For an inverse, use the counit  $(\lambda z.z_{\natural}) : \natural \natural \underline{A} \to \natural \underline{A}$ .

In one direction:

$$\underline{z_{\underline{b}}}^{\underline{b}} \equiv \underline{z_{\underline{b}}}^{\underline{b}} \equiv z$$

and in the other:

$$\underline{v}^{\flat}{}_{\flat} \equiv \underline{v} \equiv \underline{\underline{v}}_{\flat}{}^{\flat} \equiv \underline{v}_{\flat}{}^{\flat} \equiv v.$$

Review: Spatial Type Theory

The \$ Modality

Axioms

A Synthetic Smash Product

# Stability

Our spectra don't behave much like actual spectra yet.

### Axiom S

For any 'dull' spectra  $\underline{E}$  and  $\underline{F}$ , the wedge inclusion  $\iota_{E,F} : \underline{E} \vee F \to \underline{E} \times \underline{F}$  is an equivalence.

(The 'spectra' don't form a stable category in every slice, only in slices over spaces!)

### Proposition

A dull square of spectra is a pushout square iff it is a pullback square.

### Proposition

Dull spectra and dull maps between them are  $\infty$ -connected.

### Normalisation

Fix a distinguished spectrum  $\mathbb S$  : Type.

We can use this to build an adjunction



$$\Sigma^{\infty}X :\equiv X \wedge \mathbb{S}$$
  
 $\Omega^{\infty}\underline{E} :\equiv 
ature (\mathbb{S} \to_{\star} \underline{E})$ 

#### Definition

The homotopy groups of a spectrum  $\underline{E}$  are

$$\pi_n^s(\underline{E}) :\equiv \pi_n(\Omega^{\infty}\underline{E})$$

### Normalisation

In fact, this factors into a sequence of adjunctions:



where SeqPreSpec and SeqSpec are the types of sequential prespectra and spectra described earlier.

$$LJ :\equiv \operatorname{colim}(\Sigma^{\infty} J_0 \to \Omega \Sigma^{\infty} J_1 \to \Omega^2 \Sigma^{\infty} J_2 \to \dots)$$
$$(R\underline{E})_n :\equiv \Omega^{\infty} \Sigma^n \underline{E}$$

(The details of the  $SeqPreSpec \rightarrow SeqSpec$  adjunction have not yet been done in type theory)

## Normalisation

#### Axiom N

The  $L \dashv R$  adjunction between SeqSpec and Spec is a (dull) adjoint equivalence:  $Mor(J, R\underline{E}) \simeq \natural(LJ \rightarrow_{\star} \underline{E})$ 

### Proposition

$$\pi_n^s(\mathbb{S}) \simeq \operatorname{colim}_k \pi_{n+k}(S^k)$$

Proof.

$$\pi_n^s(\mathbb{S}) \equiv \pi_n(\Omega^\infty \mathbb{S}) \simeq \pi_n(\Omega^\infty(S^0 \wedge \mathbb{S})) \simeq \pi_n(\Omega^\infty \Sigma^\infty S^0)$$
  
 $\simeq \pi_n(\operatornamewithlimits{colim}_k \Omega^k \Sigma^k S^0) \simeq \operatornamewithlimits{colim}_k \pi_n(\Omega^k \Sigma^k S^0)$   
 $\simeq \operatornamewithlimits{colim}_k \pi_{n+k}(\Sigma^k S^0) \simeq \operatornamewithlimits{colim}_k \pi_{n+k}(S^k)$ 

Review: Spatial Type Theory

The \$ Modality

Axioms

## A Synthetic Smash Product

For two types A and B there should be a type  $A \otimes B$  corresponding to the 'external smash product'.



This is a symmetric monoidal product with no additional structural rules. (i.e., no weakening or contraction)

We can take a cue from 'bunched logics', where there are two ways of combining contexts, an ordinary cartesian one and a linear one.

| $\Gamma_1$ ctx                   | $\Gamma_2$ ctx | $\Gamma_1 \operatorname{ctx}$ | $\Gamma_2 \ ctx$ |
|----------------------------------|----------------|-------------------------------|------------------|
| $\Gamma_1, \Gamma_2 \text{ ctx}$ |                | $(\Gamma_1)(\Gamma_2)$ ctx    |                  |

For the comma *only*, we have weakening and contraction as normal.

- When does a 'dependent external smash' (x : A) ⊗ B(x) make sense?
- When B(x) only depends on the base space of x : A, so when we have (x : A) ⊗ B(x).
- Having the modality first is critical for dependent smash to work!

## Thank You!

- Described a human-usable type theory for a \$\$\$ modality with the correct properties.
- Gave an axiom making synthetic spectra form a stable category, and another for 'normalisation' of S.
- Hinted at how the smash type former will work.

Questions?

Joyal, André (2008). Notes on logoi. URL: http://www.math.uchicago.edu/~may/IMA/J0YAL/Joyal.pdf. Shulman, Michael (2018). "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: Math. Structures Comput. Sci. 28.6, pp. 856-941. ISSN: 0960-1295. DOI: 10.1017/S0960129517000147. URL: https://doi.org/10.1017/S0960129517000147.