Synthetic Spectra via a Monadic and Comonadic Modality

Mitchell Riley ${ }^{1}$
jww. Dan Licata ${ }^{1}$
Eric Finster ${ }^{2}$

Wesleyan University ${ }^{1}$ University of Birmingham ${ }^{2}$
$18^{\text {th }}$ June 2020

Pointed Types

Recall:

Definition

- A pointed type is a pair of A : Type and $a: A$.
- A pointed function $(A, a) \rightarrow_{\star}(B, b)$ is a function $f: A \rightarrow B$ and path $p: f(a)=b$.

Carrying these paths p through constructions can be tedious.
We might prefer to talk about functions that preserve the point strictly. But we cannot arrange this in ordinary type theory.

Spectra

Definition

- A prespectrum E is a sequence of pointed types $E: \mathbb{N} \rightarrow$ Type $_{\star}$ together with pointed maps $\alpha_{n}: E_{n} \rightarrow_{\star} \Omega E_{n+1}$.
- A spectrum is a prespectrum such that the α_{n} are pointed equivalences.

Examples

- Each abelian group G yields a spectrum with $E_{n}: \equiv K(G, n)$, the 'Eilenberg-MacLane spaces'.
- The zero spectrum with $E_{n}: \equiv 1$.
- The sphere prespectrum has $E_{n}: \equiv S^{n}$, with α_{n} the transpose of $\Sigma S^{n} \rightarrow_{\star} S^{n+1}$

Working With Spectra

Definition
A map of spectra $f: E \rightarrow F$ is a sequence of pointed maps $f_{n}: E_{n} \rightarrow_{\star} F_{n}$ that commute with the structure maps of E and F.

Not many operations on spectra have been defined in type theory!

Do It Synthetically

Can we find a model where functions automatically respect the point?

Pointed spaces or spectra don't form a good model of type theory.
Space indexed families of pointed spaces/spectra do!

Parameterised Pointed Spaces

Definition

A parameterised pointed space is a space-indexed family of pointed spaces.

Theorem
The ∞-category of parameterised pointed spaces, $P \mathcal{S}_{\star}$, is an ∞-topos.

Parameterised Spectra

Definition

A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008, jww. Biedermann)
The ∞-category of parameterised spectra, PSpec, is an ∞-topos.

Types As

HoTT

Types as ∞-groupoids.
In This Talk
Types as ∞-groupoids indexing a family of pointed things.
Spatial Type Theory (Shulman 2018)
Types as ∞-groupoids equipped with additional topological structure.

Underlying Space

For every parameterised family, there is an operation that forgets the family.

And given a space, we can equip it with the trivial family.

Underlying Space

As a diagram of categories:

$$
\stackrel{P}{P \mathcal{C}} \underset{\mathcal{S}}{\mid} \uparrow
$$

Let \ddagger be the round-trip on $P \mathcal{C}$, this is an idempotent monad and comonad that is adjoint to itself.

[^0]
Review: Spatial Type Theory

The \ddagger Modality

Axioms

A Synthetic Smash Product

Review: Spatial Type Theory

The \ddagger Modality

Axioms

A Synthetic Smash Product

Spatial Type Theory

The b / \sharp fragment of cohesive type theory (Shulman 2018).
The intended models are 'local toposes':

$$
\left.\operatorname{Disc}\right|_{\dashv} ^{\mathcal{E}}{\underset{\mathcal{S}}{ }}_{\Gamma} \stackrel{\uparrow}{ } \prod_{\mathrm{CoDisc}}
$$

with the outer functors fully faithful.

- $b: \equiv$ Disc $\circ \Gamma$ is a lex idempotent comonad,
$\forall \sharp: \equiv$ CoDisc $\circ \Gamma$ is an idempotent monad,
- with $b \dashv \sharp$.

We want b and \sharp as unary type formers in our theory.

Spatial Type Theory

Following the pattern of adjoint logic, we put in a judgemental version of b and have the type formers interact with it.

$$
\Delta \mid \Gamma \vdash a: A \quad \text { corresponds to } \quad a: b \Delta \times \Gamma \rightarrow A
$$

We need two variable rules:

$$
\begin{array}{ll}
\text { VAR } & \text { VAR-CRISP } \\
\hline \Delta \mid \Gamma, x: A, \Gamma^{\prime} \vdash x: A & \overline{\Delta, x:: A, \Delta^{\prime} \mid \Gamma \vdash x: A}
\end{array}
$$

The second rule comes from the counit $b A \rightarrow A$.

Figuring Out \#

The unary type former \sharp is supposed to be right adjoint to b, so we make it adjoint to the judgemental context b.

What does b do to contexts? Recall $\Delta \mid \Gamma$ means $b \Delta \times \Gamma$.

$$
b(b \Delta \times \Gamma) \cong b b \Delta \times b \Gamma \cong b \Delta \times b \Gamma \cong b(\Delta \times \Gamma)
$$

So applying b to $\Delta \mid \Gamma$ gives $\Delta, \Gamma \mid \cdot$.

$$
\begin{aligned}
& \sharp \text {-FORM } \\
& \frac{\Delta, \Gamma \mid \cdot \vdash A \text { type }}{\Delta \mid \Gamma \vdash \sharp A \text { type }}
\end{aligned}
$$

\#-INTRO

$$
\frac{\Delta, \Gamma \mid \cdot \vdash a: A}{\Delta \mid \Gamma \vdash a^{\sharp}: \sharp A}
$$

Figuring Out \# Elim

First go:

$$
\begin{aligned}
& \sharp-\text { ELIM-V1? } \\
& \frac{\Delta \mid \Gamma \vdash s: \sharp A}{\Delta, \Gamma \mid \cdot \vdash s_{\sharp}: A}
\end{aligned}
$$

Going from the conclusion to the premise, demoting 「 only makes it more difficult to use:

$$
\begin{aligned}
& \sharp \text {-ELIM-V2? } \\
& \frac{\Delta \mid \cdot \vdash s: \sharp A}{\Delta \mid \cdot \vdash s_{\sharp}: A}
\end{aligned}
$$

Context in the conclusion should be fully general:

$$
\begin{aligned}
& \sharp \text {-ELIM } \\
& \frac{\Delta \mid \cdot \vdash s: \sharp A}{\Delta \mid \Gamma \vdash s_{\sharp}: A}
\end{aligned}
$$

Review: Spatial Type Theory

The \ddagger Modality

Axioms

A Synthetic Smash Product

Almost Spatial Type Theory

Comparing the setting of spatial type theory with ours:

$$
\operatorname{Disc} \uparrow_{\mathcal{S}}^{\mathcal{E}}{\underset{\sim}{\mid}}^{\Gamma} \uparrow \uparrow \text { CoDisc }
$$

We could use Spatial Type Theory to study our setting on the right, if we impose that $b A \rightarrow A \rightarrow \sharp A$ is always an equivalence.

But transport across equivalence this would need to occur everywhere. We want a version that captures such a modality directly.

The Roundtrip

- The primary difficulty is that the structure maps include a non-trivial round trip $A \rightarrow \hbar A \rightarrow A$.
- In Spatial Type Theory the counit was silent, not annotated in the term.

$$
\overline{\Delta, x:: A, \Delta^{\prime} \mid \Gamma \vdash x: A}
$$

At least one of the unit or counit has to be explicit.

- We chose to make the counit explicit, and the unit silent.

Variables

Our contexts again have two zones, where $\Delta \mid \Gamma$ morally means $\curvearrowleft \Delta \times \Gamma$.

VAR
VAR-ZERO
$\overline{\Delta \mid \Gamma, x: A, \Gamma^{\prime} \vdash x: A}$
$\overline{\Delta, \underline{x}:: A, \Delta^{\prime} \mid \Gamma \vdash \underline{x}: A}$
VAR-ROUNDTRIP

$$
\overline{\Delta \mid \Gamma, x: A, \Gamma^{\prime} \vdash \underline{x}: \underline{A}}
$$

- VAR-ZERO corresponds to a use of the counit,
- VAR-ROUNDTRIP corresponds to the unit followed by the counit.
- With this convention, whenever x : A is used via $\sharp A$, it is marked.

দ on Contexts

What does \ddagger do to contexts? Like last time:

But we can't write $\Delta, \Gamma \mid \cdot$ exactly, because the counit is not silent! The types in Γ have to have all uses of other variables from Γ marked.

Let's write $\Delta, 0 \Gamma \mid$ for this.
E.g.: $\underline{x}:: A \mid y: B, z: C(y)$ becomes $\underline{x}:: A, \underline{y}:: B, \underline{z}:: C(\underline{y}) \mid \cdot$

Marking Terms

Precomposition with the structural rules can be extended to terms:

$$
\begin{array}{r}
\Delta, 0 \Gamma \mid \cdot \vdash a: A \\
\Delta \mid \Gamma \vdash a: A
\end{array}
$$

When using $x: A$ via the round-trip, also have to round-trip the type:

VAR-ROUNDTRIP
$\Delta \mid \Gamma, x: A, \Gamma^{\prime} \vdash \underline{x}: \underline{A}$

Figuring Out 4

$$
\begin{aligned}
& \text { 4-FORM } \\
& \frac{\Delta, 0 \Gamma \mid \cdot \vdash A \text { type }}{\Delta \mid \Gamma \vdash Ł A \text { type }} \\
& \text { h-INTRO } \\
& \Delta, 0 \Gamma \mid \cdot \vdash a: A \\
& \Delta \mid \Gamma \vdash a^{\natural}: \natural A \\
& \text { t-ELIM-v1? } \\
& \frac{\Delta \mid \Gamma \vdash a: দ A}{\Delta, 0 \Gamma \mid \cdot \vdash a_{\natural}: A}
\end{aligned}
$$

Here we don't have to drop Γ as we did with \sharp, instead we can precompose the result with the unit:

$$
\begin{aligned}
& \text { দ-ELIM } \\
& \frac{\Delta \mid \Gamma \vdash a: \natural A}{\Delta \mid \Gamma \vdash a_{\natural}: A}
\end{aligned}
$$

Rules for \square

$$
\begin{aligned}
& \text { দ-FORM } \\
& \frac{\Delta, 0 \Gamma \mid \cdot \vdash A \text { type }}{\Delta \mid \Gamma \vdash \natural A \text { type }}
\end{aligned}
$$

দ-INTRO	দ-ELim
$\frac{\Delta, 0 \Gamma \mid \cdot \vdash a: A}{\Delta \mid \Gamma \vdash a^{\natural}: দ A}$	$\frac{\Delta \mid \Gamma \vdash v: দ A}{\Delta \mid \Gamma \vdash v_{\natural}: A}$

দ-BETA
$\frac{\Delta, 0 \Gamma \mid \cdot \vdash a: A}{\Delta \mid \Gamma \vdash a^{\natural} \downharpoonright a: A}$

দ-ETA

$$
\frac{\Delta \mid \Gamma \vdash v: \curvearrowleft A}{\Delta \mid \Gamma \vdash v \equiv \underline{v}_{\natural}^{\natural}: \curvearrowleft A}
$$

Properties of \square

- \bigsqcup is a lex monadic modality in the sense of the HoTT book, like $\#$
- b is also comonadic, like b
- \downarrow is self-adjoint: $\mathfrak{\natural}(\llcorner A \rightarrow B) \simeq \natural(A \rightarrow দ B)$

Definition

- A type X is a space if $\left(\lambda x \cdot \underline{x}^{\natural}\right): X \rightarrow \natural X \underline{X}$ is an equivalence.
- A type E is a spectrum if $\mathfrak{\underline { E }}$ is contractible.
(To be more model agnostic you might call these 'modal' and 'reduced')

Using \square

Proposition
For any A, the type $\bigsqcup \underline{A}$ is a space.
Proof.
We have to show that $\left(\lambda v \cdot \underline{v}^{\natural}\right): দ \underline{A} \rightarrow \nleftarrow \underline{A}$ is an equivalence. For an inverse, use the counit $\left(\lambda z . z_{\natural}\right):$ 印 $\underline{A} \rightarrow\llcorner\underline{A}$.

In one direction:

$$
z_{\underline{\square}}^{\natural} \equiv \underline{z}_{\square}^{\natural} \equiv z
$$

and in the other:

$$
\underline{v}^{\natural} \natural \equiv \underline{v} \equiv \underline{v}_{\natural}^{\natural} \equiv \underline{v}_{\natural}^{\natural} \equiv v .
$$

Review: Spatial Type Theory

The \ddagger Modality

Axioms

A Synthetic Smash Product

Stability

Our spectra don't behave much like actual spectra yet.
Axiom S
For any 'dull' spectra \underline{E} and \underline{F}, the wedge inclusion
${ }^{\iota_{\underline{E}}, \underline{E}}: \underline{E} \vee \underline{F} \rightarrow \underline{E} \times \underline{F}$ is an equivalence.
(The 'spectra' don't form a stable category in every slice, only in slices over spaces!)

Proposition

A dull square of spectra is a pushout square iff it is a pullback square.

Proposition
Dull spectra and dull maps between them are ∞-connected.

Normalisation

Fix a distinguished spectrum \mathbb{S} : Type.
We can use this to build an adjunction

$$
\begin{aligned}
& \Sigma^{\infty} X: \equiv X \wedge \mathbb{S} \\
& \Omega^{\infty} \underline{E}: \equiv দ\left(\mathbb{S} \rightarrow_{\star} \underline{E}\right)
\end{aligned}
$$

Definition
The homotopy groups of a spectrum \underline{E} are

$$
\pi_{n}^{s}(\underline{E}): \equiv \pi_{n}\left(\Omega^{\infty} \underline{E}\right)
$$

Normalisation

In fact, this factors into a sequence of adjunctions:

where SeqPreSpec and SeqSpec are the types of sequential prespectra and spectra described earlier.

$$
\begin{aligned}
L J & : \equiv \operatorname{colim}\left(\Sigma^{\infty} J_{0} \rightarrow \Omega \Sigma^{\infty} J_{1} \rightarrow \Omega^{2} \Sigma^{\infty} J_{2} \rightarrow \ldots\right) \\
(R \underline{E})_{n} & : \equiv \Omega^{\infty} \Sigma^{n} \underline{E}
\end{aligned}
$$

(The details of the SeqPreSpec \rightarrow SeqSpec adjunction have not yet been done in type theory)

Normalisation

Axiom N
The $L \dashv R$ adjunction between SeqSpec and Spec is a (dull) adjoint equivalence: $\operatorname{Mor}(J, R \underline{E}) \simeq দ\left(L J \rightarrow_{\star} \underline{E}\right)$

Proposition
$\pi_{n}^{s}(\mathbb{S}) \simeq \operatorname{colim}_{k} \pi_{n+k}\left(S^{k}\right)$
Proof.

$$
\begin{aligned}
\pi_{n}^{s}(\mathbb{S}) & \equiv \pi_{n}\left(\Omega^{\infty} \mathbb{S}\right) \simeq \pi_{n}\left(\Omega^{\infty}\left(S^{0} \wedge \mathbb{S}\right)\right) \simeq \pi_{n}\left(\Omega^{\infty} \Sigma^{\infty} S^{0}\right) \\
& \simeq \pi_{n}\left(\operatorname{colim}_{k} \Omega^{k} \Sigma^{k} S^{0}\right) \simeq \operatorname{colim}_{k} \pi_{n}\left(\Omega^{k} \Sigma^{k} S^{0}\right) \\
& \simeq \operatorname{colim}_{k} \pi_{n+k}\left(\Sigma^{k} S^{0}\right) \simeq \operatorname{colim}_{k} \pi_{n+k}\left(S^{k}\right)
\end{aligned}
$$

Review: Spatial Type Theory

The \bigsqcup Modality

Axioms

A Synthetic Smash Product

Coming Soon

For two types A and B there should be a type $A \otimes B$ corresponding to the 'external smash product'.

This is a symmetric monoidal product with no additional structural rules. (i.e., no weakening or contraction)

Bunched Contexts

We can take a cue from 'bunched logics', where there are two ways of combining contexts, an ordinary cartesian one and a linear one.

$$
\frac{\Gamma_{1} \operatorname{ctx} \Gamma_{2} \operatorname{ctx}}{\Gamma_{1}, \Gamma_{2} \operatorname{ctx}} \quad \frac{\Gamma_{1} \operatorname{ctx} \Gamma_{2} \operatorname{ctx}}{\left(\Gamma_{1}\right)\left(\Gamma_{2}\right) \mathrm{ctx}}
$$

For the comma only, we have weakening and contraction as normal.

Smash and Dependency

- When does a 'dependent external smash' $(x: A) \otimes B(x)$ make sense?
- When $B(x)$ only depends on the base space of $x: A$, so when we have $(x: A) \otimes B(\underline{x})$.
- Having the modality first is critical for dependent smash to work!

Thank You!

- Described a human-usable type theory for a \ddagger modality with the correct properties.
- Gave an axiom making synthetic spectra form a stable category, and another for 'normalisation' of \mathbb{S}.
- Hinted at how the smash type former will work.

Questions?

References I

Joyal, André (2008). Notes on logoi. URL:
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf.
Shulman, Michael (2018). "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: Math. Structures Comput. Sci. 28.6, pp. 856-941. ISSN: 0960-1295. DOI: 10.1017/S0960129517000147.
URL: https://doi.org/10.1017/S0960129517000147.

[^0]: Goal:
 We want an extension of HoTT with a type former \downarrow that captures this situation.

