Commuting Cohesions

David Jaz Myers and Mitchell Riley

CQTS

New York University Abu Dhabi

$$
22^{\text {nd }} \text { May } 2023
$$

Spatial Type Theory

Spatial type theory is an extension of HoTT whose intended models are 'local toposes':
with the outer functors fully faithful.

- $b: \equiv \operatorname{Disc} \circ \Gamma$ is a lex idempotent comonad,
- $\sharp: \equiv \mathrm{CoDisc} \circ \Gamma$ is an idempotent monad,
- with $b \dashv \sharp$.

In nice settings, there is a type G that "detects connectivity" $\{X$ is b-modal $\} \longleftrightarrow\{X$ is G-null $\}$

Spatial Type Theory

Spatial type theory is an extension of HoTT whose intended models are 'local toposes':
with the outer functors fully faithful.
$>b: \equiv \operatorname{Disc} \circ \Gamma$ is a lex idempotent comonad,
$\forall: \equiv \mathrm{CoDisc} \circ \Gamma$ is an idempotent monad,

- with $b \dashv \sharp$.

In nice settings, there is a type G that "detects connectivity"

$$
\{X \text { is } b \text {-modal }\} \longleftrightarrow\{X \text { is } G \text {-null }\}
$$

Then $\int: \equiv($ nullification at $G)$ is left adjoint to b.

Examples of Cohesion

"Topological" ∞-groupoids (say, sheaves on Cartesian spaces):

- $\int X$: Fundamental ∞-groupoid, topologised discretely
- $b X$: Discrete retopologization
- $\sharp X$: Codiscrete retopologization
- Connectivity detected by \mathbb{R}

Simplicial ∞-groupoids:

- re X : Realization, as a 0 -skeletal simplicial ∞-groupoid - $\mathrm{sk}_{\mathrm{n}} X$: 0-skeleton
- csk K_{0} : 0-coskeleton
- Connectivity detected by $\Delta[1]$ (postulated as a total order with 0 and 1)
From $\Delta[1]$ you can define $\Delta[n]: \equiv$ (chains of length n in $\Delta[1])$ and $X_{n}: \equiv \operatorname{sk}_{0}(\Delta[n] \rightarrow X)$

Examples of Cohesion

"Topological" ∞-groupoids (say, sheaves on Cartesian spaces):

- $\int X$: Fundamental ∞-groupoid, topologised discretely
- $b X$: Discrete retopologization
- $\sharp X$: Codiscrete retopologization
- Connectivity detected by \mathbb{R}

Simplicial ∞-groupoids:

- re X : Realization, as a 0 -skeletal simplicial ∞-groupoid
- $\mathrm{sk}_{0} X$: 0-skeleton
- csk ${ }_{0} X$: 0-coskeleton
- Connectivity detected by $\Delta[1]$ (postulated as a total order with 0 and 1)
From $\Delta[1]$ you can define $\Delta[n]: \equiv$ (chains of length n in $\Delta[1])$ and $X_{n}: \equiv \operatorname{sk}_{0}(\Delta[n] \rightarrow X) \ldots$

Spatial Type Theory

$$
\text { CTX-EMPTY } \overline{\cdot \mid \cdot \mathrm{ctx}}
$$

$$
\begin{gathered}
\text { CTX-EXT-CRISP } \frac{\Delta \mid \cdot \vdash A \text { type }}{\Delta, x: A \mid \cdot \mathrm{ctx}} \quad \text { CTX-EXT } \frac{\Delta \mid \Gamma \vdash A \text { type }}{\Delta \mid \Gamma, x: A \operatorname{ctx}} \\
\quad \text { VAR-CRISP } \overline{\Delta, x: A, \Delta^{\prime} \mid \Gamma \vdash x: A}
\end{gathered}
$$

$$
\operatorname{vaR} \overline{\Delta \mid \Gamma, x: A, \Gamma^{\prime} \vdash x: A}
$$

Spatial Type Theory

$$
\begin{aligned}
& \text { CTX-EMPTY } \frac{\operatorname{ctx}}{\operatorname{VAR} \overline{\Gamma, x: A, \Gamma^{\prime} \vdash x: A}} \quad \operatorname{CTX-EXT} \frac{\Gamma \vdash A \text { type }}{\Gamma, x: A \operatorname{ctx}} \\
& \qquad \begin{array}{l}
\Gamma, x: A \operatorname{ctx}
\end{array} \sqrt{\Gamma, x: A, \Gamma^{\prime} \vdash x: A} \\
& \text { Definition. } \\
& \text { In the deles all variables not annotated by context formulation, } \Delta \mid \Gamma \text { ctx } \rightsquigarrow \Delta \mid \cdot \mathrm{ctx} .
\end{aligned}
$$

Spatial Type Theory

$$
\begin{aligned}
& \text { CTX-EMPTY } \cdot \overline{c t x} \\
& \operatorname{CTX}-\operatorname{EXt} \frac{\Gamma \vdash A \text { type }}{\Gamma, x: A \text { ctx }} \\
& \operatorname{VAR} \overline{\Gamma, x: A, \Gamma^{\prime} \vdash x: A} \\
& \text { VAR- } \overline{\Gamma, x:{ }_{\vee} A, \Gamma^{\prime} \vdash x: A}
\end{aligned}
$$

Definition. $\vee \backslash \Gamma$ deletes all variables not annotated by \vee.
In the dual context formulation, $\Delta|\Gamma \operatorname{ctx} \rightsquigarrow \Delta| \cdot \mathrm{ctx}$.

$$
\begin{gathered}
\text { b-FORM } \frac{\vee \backslash \Gamma \vdash A \text { type }}{\Gamma \vdash b_{\vee} A \text { type }} \\
\text { b-INTRO } \frac{\vee \backslash \Gamma \vdash M: A}{\Gamma \vdash M^{b_{\vartheta}}: b_{\vee} A} \\
\frac{\Gamma \vdash M: b_{\vee} A \quad \Gamma, u: \vee A \vdash N: C\left[u^{b_{\vee}} / x\right]}{\Gamma \vdash\left(\text { let } u^{b_{\vartheta}}:=M \text { in } N\right): C[M / x]}
\end{gathered}
$$

$$
\begin{gathered}
\sharp-\text { FORm } \frac{\vee \Gamma \vdash A \text { type }}{\Gamma \vdash \sharp \vee A \text { type }} \\
\sharp \text {-INTRO } \frac{\vee \Gamma \vdash M: A}{\Gamma \vdash M^{\sharp »}: \sharp \triangleright A} \quad \sharp \text {-ELIM } \frac{\vee \backslash \Gamma \vdash N: \sharp \triangleright A}{\Gamma \vdash N_{\sharp ゅ}: A}
\end{gathered}
$$

Definition. $\nabla \Gamma$ adds the \checkmark annotation to every variable in Γ.

With dual contexts, $\Delta|\Gamma \operatorname{ctx} \rightsquigarrow \Delta, \Gamma| \cdot$ ctx.

The Goal

We want to prove an internal version of:
Theorem. The homotopy type of a manifold M may be computed as the realization of a certain simplicial set built from the Čech complex of any "good" cover.

The Čech Complex

For $f: X \rightarrow Y$, the Čech complex is the simplicial diagram

$$
\begin{aligned}
& X \times_{Y} X \times_{Y} X \\
& \downarrow \uparrow \underset{X}{\downarrow} \uparrow_{\times_{Y}} \underset{\sim}{\downarrow} \uparrow \downarrow \\
& \downarrow \uparrow \downarrow \\
& X
\end{aligned}
$$

Definition. The Čech complex $\mathrm{C}(f)$ of f is its csk ${ }_{0}$-image:

$$
\check{\check{C}}(f): \equiv(y: Y) \times \operatorname{csk} k_{0}((x: X) \times(f x=y))
$$

The Čech Complex

For $f: X \rightarrow Y$, the Čech complex is the simplicial diagram

Definition. The Čech complex $\check{\mathrm{C}}(f)$ of f is its csk $_{0}$-image:

$$
\check{\mathrm{C}}(f): \equiv(y: Y) \times \operatorname{csk}_{0}((x: X) \times(f x=y))
$$

The Čech Complex

Proposition. For 0-skeletal X and Y ,

$$
\check{\mathrm{C}}(f)_{n} \simeq X \times_{Y} \cdots \times_{Y} X \simeq(y: Y) \times((x: X) \times(f x=y))^{n+1}
$$

Proof.

$\check{C}(f)_{n}$
$: \equiv \operatorname{sk}_{0}(\Delta[n] \rightarrow \check{\mathrm{C}}(f))$
$\equiv \operatorname{sk}_{0}\left(\Delta[n] \rightarrow(y: Y) \times \operatorname{csk}_{0}((x: X) \times(f x=y))\right)$
$\simeq \operatorname{sk}_{0}\left((\sigma: \Delta[n] \rightarrow Y) \times\left((i: \Delta[n]) \rightarrow\right.\right.$ csk $\left.\left._{0}((x: X) \times(f x=\sigma i))\right)\right)$
$\simeq \operatorname{sk}_{0}\left((y: Y) \times\left(\Delta[n] \rightarrow \operatorname{csk}_{0}((x: X) \times(f x=y))\right)\right)$
$\simeq \operatorname{sk}_{0}\left((y: Y) \times \operatorname{csk}_{0}([n] \rightarrow(x: X) \times(f x=y))\right)$
$\simeq\left(\left(u: \operatorname{sk}_{0} Y\right) \times\right.$ let $y^{\text {sk }_{0}}:=u$ insk $\left.{ }_{0}([n] \rightarrow(x: X) \times(f x=y))\right)$
$\simeq((y: Y) \times([n] \rightarrow(x: X) \times(f x=y)))$
$\simeq(y: Y) \times((x: X) \times(f x=y))^{n+1}$

Commuting Cohesions

Commuting Cohesions

Add a copy of all the above rules for another annotation $\%$.

$$
b_{\&} \text {-FORM } \frac{\Gamma \vdash C \text { type }}{\Gamma \vdash b_{\&} A \text { type }} \quad \sharp_{\infty}-\text { FORM } \frac{\Gamma \vdash A \text { type }}{\Gamma \vdash \sharp_{\&} A \text { type }}
$$

The possible annotations on variables are $\{\varnothing, \nabla, \%, \vee \%\}$.

Commuting Cohesions

Add a copy of all the above rules for another annotation $\%$.

$$
b_{\&} \text {-FORM } \frac{\Gamma \vdash C \text { type }}{\Gamma \vdash b_{\&} A \text { type }} \quad \sharp_{\infty}-\text { FORM } \frac{\Gamma \vdash A \text { type }}{\Gamma \vdash \sharp_{\&} A \text { type }}
$$

The possible annotations on variables are $\{\varnothing, \nabla, \uparrow, \nu \&\}$.

$$
\begin{gathered}
\operatorname{CTX}-\operatorname{EXT} \frac{\bullet\{\bullet, \bullet\} \quad \bullet \backslash \Gamma \vdash A \text { type }}{\Gamma, x: \bullet A \operatorname{ctx}} \\
\operatorname{VAR} \frac{\Gamma, x: \bullet A, \Gamma^{\prime} \operatorname{ctx}}{\Gamma, x: \bullet A, \Gamma^{\prime} \vdash x: A}
\end{gathered}
$$

Commuting Cohesions

One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and \sharp) using no axioms are true also of (b_{φ} and \sharp_{ν}) and (b_{ϕ} and \sharp_{∞}).

Lemma. b_{ν} and b_{ϕ} commute.

Proof
$u \mapsto$ let $v^{b_{\psi}}:=u$ in (let $w^{b_{\psi}}:=v$ in $\left.w^{b_{\psi} b_{\psi}}\right)$
and vice versa.
Lemma. H_{∞} and H_{∞} commute.

Lemma. \int_{\vee} and $\int_{\&}$ commute (when they both exist).

One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and \sharp) using no axioms are true also of (b_{φ} and \sharp_{ν}) and (b_{ϕ} and \sharp_{∞}). Lemma. b_{ψ} and b_{ϕ} commute.

Proof.

$$
\begin{aligned}
b_{\varphi} b_{*} X & \rightarrow b_{\&} b_{\psi} X \\
u & \mapsto \text { let } v^{b_{\varphi}}:=u \text { in }\left(\text { let } w^{b_{*}}:=v \text { in } w^{b_{\varphi} b_{*}}\right)
\end{aligned}
$$

and vice versa.
Lemma.
\#\# and $\sharp_{\&}$ commute.

Lemma. fe and fe commute (when they both exist).

One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and \sharp) using no axioms are true also of (b_{φ} and \sharp_{ν}) and (b_{ϕ} and \sharp_{∞}). Lemma. b_{ψ} and b_{ϕ} commute.

Proof.

$$
\begin{aligned}
b_{\varphi} b_{*} X & \rightarrow b_{\&} b_{\psi} X \\
u & \mapsto \text { let } v^{b_{\varphi}}:=u \text { in }\left(\text { let } w^{b_{*}}:=v \text { in } w^{b_{\varphi} b_{*}}\right)
\end{aligned}
$$

and vice versa.
Lemma. $\# \otimes$ and \sharp_{∞} commute.
Proof. $v \mapsto v_{\sharp ッ \not \sharp_{\infty}} \not \sharp_{\Downarrow} \sharp_{\infty}$ and vice versa.
Lemma. \int_{v} and \int_{ϕ} commute (when they both exist).

One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and \sharp) using no axioms are true also of (b_{φ} and \sharp_{ν}) and (b_{ϕ} and \sharp_{∞}). Lemma. b_{ψ} and b_{ϕ} commute.

Proof.

$$
\begin{aligned}
b_{\varphi} b_{*} X & \rightarrow b_{\&} b_{\psi} X \\
u & \mapsto \text { let } v^{b_{\varphi}}:=u \text { in }\left(\text { let } w^{b_{*}}:=v \text { in } w^{b_{\varphi} b_{*}}\right)
\end{aligned}
$$

and vice versa.
Lemma. $\# \otimes$ and \sharp_{∞} commute.
Proof. $v \mapsto v_{\sharp ッ \not \sharp_{\infty}} \not{ }_{\Perp} \sharp_{\infty}$ and vice versa.
Lemma. \int_{\vee} and $\int_{\&}$ commute (when they both exist).

Red Cohesion, Blue Cohesion

But not everything commutes with everything!
Definition. If types G and H detect connectivity of $จ$ and $\boldsymbol{\&}$, we say \checkmark and are orthogonal when G is b_{∞}-modal and H is be-modal.

```
Lemma. If }X\mathrm{ is }\mp@subsup{\int}{&}{\infty}\mathrm{ -modal then }\mp@subsup{H}{\bullet}{}X\mathrm{ is also (& -modal.
```

Proof

since H was assumed b-modal since X is f modal

Red Cohesion, Blue Cohesion

But not everything commutes with everything!
Definition. If types G and H detect connectivity of ∇ and $\%$, we say \downarrow and orthogonal when G is b-modal and H is bw-modal.

Lemma. If X is $\int_{\phi}-$ modal then $\sharp_{\otimes} X$ is also \int_{ϕ}-modal.
Proof
since H was assumed $b *-m o d a l$ since X is f-modal

Red Cohesion, Blue Cohesion

But not everything commutes with everything!
Definition. If types G and H detect connectivity of ∇ and $\%$, we say \downarrow and orthogonal when G is b-modal and H is bw-modal.

Lemma. If X is \int_{ϕ}-modal then $\sharp \triangleright X$ is also \int_{\downarrow}-modal.
Proof.

$$
\begin{aligned}
& (H \rightarrow \sharp ャ X) \\
& \simeq \sharp \vee(H \rightarrow \sharp \vee X) \\
& \simeq \sharp \vee(b \vee H \rightarrow X) \\
& \simeq \sharp \vee(H \rightarrow X) \\
& \simeq \sharp \vee X
\end{aligned}
$$

$$
\simeq \not \sharp_{\nu}(H \rightarrow X) \quad \text { since } H \text { was assumed } b_{\vee} \text {-modal }
$$

since X is \int_{ϕ}-modal

Red Cohesion, Blue Cohesion

Still if and are orthogonal,
Proposition. (\&-crisp \int_{\vee}-induction)
$b_{\&}\left(b_{\&} \int_{\vee} A \rightarrow B\right) \rightarrow b_{\&}\left(b_{\phi} A \rightarrow B\right)$ is an equivalence for \int_{\vee}-modal B.

Proof.

$$
\begin{aligned}
& b_{\&}\left(b_{\phi} \int_{\vee} A \rightarrow B\right) \\
& \simeq b_{\phi}\left(\int_{\vee} A \rightarrow \#_{\infty} B\right) \quad \text { by } b_{\phi} \dashv \sharp_{\infty} \\
& \simeq b_{\phi}\left(A \rightarrow \sharp_{\infty} B\right) \quad \text { by the previous Lemma } \\
& \simeq b_{\phi}\left(b_{\phi} A \rightarrow B\right) \\
& \text { by } b_{\phi} \dashv 甘 \&
\end{aligned}
$$

Lemma. \int_{\vee} and $b_{\&_{\phi}}$ commute.
Proof. Use the induction principles in both directions.
Corollary. b_{\vee} and \sharp_{\star} commute.

Simplicial Real Cohesion

Assume

- \vee satisfies the axioms of Real Cohesion, $\int \dashv b \dashv \sharp$;
- satisfies the axioms of Simplicial Cohesion, re $\dashv \mathrm{sk}_{0} \dashv \mathrm{csk}_{0}$;
- They are orthogonal (\mathbb{R} is 0 -skeletal and $\Delta[1]$ is discrete); \int is calculated levelwise: $(\eta)_{n}: X_{n} \rightarrow\left(\int X\right)_{n}$ is itself a \int-unit.

Simplicial Real Cohesion

Assume

- \vee satisfies the axioms of Real Cohesion, $\int \dashv b \dashv \sharp$;
- satisfies the axioms of Simplicial Cohesion, re $\dashv \mathrm{sk}_{0} \dashv \mathrm{csk}_{0}$;
- They are orthogonal (\mathbb{R} is 0 -skeletal and $\Delta[1]$ is discrete);
- \int is calculated levelwise: $(\eta)_{n}: X_{n} \rightarrow\left(\int X\right)_{n}$ is itself a \int-unit.

Good Covers

Definition. A cover of a 0 -skeletal type M is a family $U: I \rightarrow(M \rightarrow$ Prop $)$ for a discrete 0 -skeletal set I so that for every $m: M$ there is merely an $i: I$ with $m \in U_{i}$.
Definition. A cover is good if for any $n: \mathbb{N}$ and any $k:[n] \rightarrow I$, the \int-shape of

$$
\bigcap U_{k(i)}: \equiv(m: M) \times\left((i:[n]) \rightarrow\left(m \in U_{k(i)}\right)\right)
$$

is a proposition.

Good Covers

Definition. A cover of a 0 -skeletal type M is a family $U: I \rightarrow(M \rightarrow$ Prop $)$ for a discrete 0 -skeletal set I so that for every $m: M$ there is merely an $i: I$ with $m \in U_{i}$.
Definition. A cover is good if for any $n: \mathbb{N}$ and any $k:[n] \rightarrow I$, the \int-shape of

$$
\bigcap_{i:[n]} U_{k(i)}: \equiv(m: M) \times\left((i:[n]) \rightarrow\left(m \in U_{k(i)}\right)\right) .
$$

is a proposition.

The Projection $\pi: \check{\mathrm{C}}(c) \rightarrow$ csk $_{0} I$

We may assemble a cover into a single surjective map
$c: \bigsqcup_{i: I} U_{i} \rightarrow M$, where

$$
\bigsqcup_{i: I} U_{i}: \equiv(i: I) \times(m: M) \times\left(m \in U_{i}\right)
$$

Then there is a projection $\pi: \check{\mathrm{C}}(c) \rightarrow$ csk $_{0} I$

The Good Cover Theorem

Lemma. U is a good cover iff the restriction $\pi: \check{\mathrm{C}}(c) \rightarrow \mathrm{im} \pi$ is a \int-unit.

By an axiom, it suffices to check this on simplices, and we have a convenient description of $\check{\mathrm{C}}(c)_{n}$
Theorem. re im $\pi \simeq \int M$
Proof. The previous says that $\operatorname{im} \pi \simeq \int \check{C}(c)$, then

$$
\operatorname{reim} \pi \simeq \operatorname{re} \int \check{\mathrm{C}}(c) \simeq \int \operatorname{reC}(c) \simeq \int \operatorname{im} c \simeq \int M
$$

$\operatorname{im} \pi$ is a subtype of $\mathrm{csk}_{0} I$. By assumption I is discrete, so $\operatorname{csk}_{0} I$ is discrete, and then $\operatorname{im} \pi$ is discrete. So we have exhibited $\int M$ as the realization of a discrete simplicial set.

