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Spatial Type Theory

Spatial type theory is an extension of HoTT whose intended
models are ‘local toposes’:

E

S

Γ⊣Disc ⊣ CoDisc

with the outer functors fully faithful.

▶ ♭ :≡ Disc ◦ Γ is a lex idempotent comonad,

▶ ♯ :≡ CoDisc ◦ Γ is an idempotent monad,

▶ with ♭ ⊣ ♯.

In nice settings, there is a type G that “detects connectivity”

{X is ♭-modal} {X is G-null}

Then S :≡ (nullification at G) is left adjoint to ♭.
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Examples of Cohesion

“Topological” ∞-groupoids (say, sheaves on Cartesian spaces):

▶ SX: Fundamental ∞-groupoid, topologised discretely

▶ ♭X: Discrete retopologization

▶ ♯X: Codiscrete retopologization

▶ Connectivity detected by R
Simplicial ∞-groupoids:

▶ reX: Realization, as a 0-skeletal simplicial ∞-groupoid

▶ sk0X: 0-skeleton

▶ csk0X: 0-coskeleton

▶ Connectivity detected by ∆[1] (postulated as a total order
with 0 and 1)

From ∆[1] you can define ∆[n] :≡ (chains of length n in ∆[1])
and Xn :≡ sk0(∆[n] → X). . .
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Spatial Type Theory

ctx-empty
· | · ctx

ctx-ext-crisp
∆ | · ⊢ A type

∆, x : A | · ctx
ctx-ext

∆ | Γ ⊢ A type

∆ | Γ, x : A ctx

var-crisp
∆, x : A,∆′ | Γ ⊢ x : A

var
∆ | Γ, x : A,Γ′ ⊢ x : A
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Spatial Type Theory

ctx-empty
· ctx

ctx-ext
Γ ⊢ A type

Γ, x : A ctx

var
Γ, x : A,Γ′ ⊢ x : A

ctx-ext-♥
♥ \ Γ ⊢ A type

Γ, x :♥ A ctx
var-♥

Γ, x :♥ A,Γ′ ⊢ x : A

Definition. ♥ \ Γ deletes all variables not annotated by ♥.

In the dual context formulation, ∆ | Γ ctx⇝ ∆ | · ctx.
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♭

♭-form
♥ \ Γ ⊢ A type

Γ ⊢ ♭♥A type

♭-intro
♥ \ Γ ⊢ M : A

Γ ⊢ M ♭♥ : ♭♥A

♭-elim

♥ \ Γ ⊢ A type Γ, x : ♭♥A ⊢ C type

Γ ⊢ M : ♭♥A Γ, u :♥ A ⊢ N : C[u♭♥/x]

Γ ⊢ (let u♭♥ := M inN) : C[M/x]
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♯

♯-form
♥Γ ⊢ A type

Γ ⊢ ♯♥A type

♯-intro
♥Γ ⊢ M : A

Γ ⊢ M ♯♥ : ♯♥A
♯-elim

♥ \ Γ ⊢ N : ♯♥A

Γ ⊢ N♯♥ : A

Definition. ♥Γ adds the ♥ annotation to every variable in Γ.

With dual contexts, ∆ | Γ ctx⇝ ∆,Γ | · ctx.
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The Goal

We want to prove an internal version of:

Theorem. The homotopy type of a manifold M may be
computed as the realization of a certain simplicial set built from
the Čech complex of any “good” cover.
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The Čech Complex

For f : X → Y , the Čech complex is the simplicial diagram

...
X ×Y X ×Y X

X ×Y X

X

Definition. The Čech complex Č(f) of f is its csk0-image:

Č(f) :≡ (y : Y )× csk0((x : X)× (fx = y)).
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The Čech Complex

Proposition. For 0-skeletal X and Y,

Č(f)n ≃ X ×Y · · · ×Y X ≃ (y : Y )× ((x : X)× (fx = y))n+1

Proof.

Č(f)n

:≡ sk0(∆[n] → Č(f))

≡ sk0(∆[n] → (y : Y )× csk0((x : X)× (fx = y)))

≃ sk0((σ : ∆[n] → Y )× ((i : ∆[n]) → csk0((x : X)× (fx = σi))))

≃ sk0((y : Y )× (∆[n] → csk0((x : X)× (fx = y))))

≃ sk0((y : Y )× csk0([n] → (x : X)× (fx = y)))

≃ ((u : sk0 Y )× let ysk0 := u in sk0([n] → (x : X)× (fx = y)))

≃ ((y : Y )× ([n] → (x : X)× (fx = y)))

≃ (y : Y )× ((x : X)× (fx = y))n+1
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Commuting Cohesions

E∆op

S∆op E

S
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Commuting Cohesions

Add a copy of all the above rules for another annotation ♣.

♭♣-form
♣ \ Γ ⊢ A type

Γ ⊢ ♭♣A type
♯♣-form

♣Γ ⊢ A type

Γ ⊢ ♯♣A type

. . .

The possible annotations on variables are {∅,♥,♣,♥♣}.

ctx-ext
• ⊆ {♥,♣} • \ Γ ⊢ A type

Γ, x :• A ctx

var
Γ, x :• A,Γ

′ ctx

Γ, x :• A,Γ
′ ⊢ x : A
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Commuting Cohesions

−

♥ ♣

♥♣
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One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (♭ and ♯)
using no axioms are true also of (♭♥ and ♯♥) and (♭♣ and ♯♣).

Lemma. ♭♥ and ♭♣ commute.

Proof.

♭♥♭♣X → ♭♣♭♥X

u 7→ let v♭♥ := u in (let w♭♣ := v inw♭♥ ♭♣)

and vice versa.

Lemma. ♯♥ and ♯♣ commute.

Proof. v 7→ v♯♥ ♯♣
♯♥ ♯♣ and vice versa.

Lemma. S♥ and S♣ commute (when they both exist).
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Red Cohesion, Blue Cohesion

But not everything commutes with everything!

Definition. If types G and H detect connectivity of ♥ and ♣,
we say ♥ and ♣ are orthogonal when G is ♭♣-modal and H is
♭♥-modal.

Lemma. If X is S♣-modal then ♯♥X is also S♣-modal.

Proof.

(H → ♯♥X)

≃ ♯♥(H → ♯♥X)

≃ ♯♥(♭♥H → X)

≃ ♯♥(H → X) since H was assumed ♭♥-modal

≃ ♯♥X since X is S♣-modal
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Red Cohesion, Blue Cohesion

Still if ♥ and ♣ are orthogonal,

Proposition. (♣-crisp S♥-induction)
♭♣(♭♣S♥A → B) → ♭♣(♭♣A → B) is an equivalence for S♥-modal
B.

Proof.

♭♣(♭♣S♥A → B)

≃ ♭♣(S♥A → ♯♣B) by ♭♣ ⊣ ♯♣

≃ ♭♣(A → ♯♣B) by the previous Lemma

≃ ♭♣(♭♣A → B) by ♭♣ ⊣ ♯♣

Lemma. S♥ and ♭♣ commute.

Proof. Use the induction principles in both directions.

Corollary. ♭♥ and ♯♣ commute.
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Simplicial Real Cohesion

Assume

▶ ♥ satisfies the axioms of Real Cohesion, S ⊣ ♭ ⊣ ♯;

▶ ♣ satisfies the axioms of Simplicial Cohesion,
re ⊣ sk0 ⊣ csk0;

▶ They are orthogonal (R is 0-skeletal and ∆[1] is discrete);

▶ S is calculated levelwise: (η)n : Xn → (SX)n is itself a S-unit.
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Good Covers

Definition. A cover of a 0-skeletal type M is a family
U : I → (M → Prop) for a discrete 0-skeletal set I so that for
every m : M there is merely an i : I with m ∈ Ui.

Definition. A cover is good if for any n : N and any k : [n] → I,
the S-shape of⋂

i:[n]

Uk(i) :≡ (m : M)× ((i : [n]) → (m ∈ Uk(i))).

is a proposition.
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The Projection π : Č(c) → csk0 I

We may assemble a cover into a single surjective map
c :

⊔
i:I Ui → M , where⊔

i:I

Ui :≡ (i : I)× (m : M)× (m ∈ Ui).

Then there is a projection π : Č(c) → csk0 I

...
C ×M C ×M C

C ×M C

C

π7−−−−→

...
I × I × I

I × I

I
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The Good Cover Theorem

Lemma. U is a good cover iff the restriction π : Č(c) → imπ is
a S-unit.

By an axiom, it suffices to check this on simplices, and we have
a convenient description of Č(c)n

Theorem. re imπ ≃ SM

Proof. The previous says that imπ ≃ SČ(c), then

re imπ ≃ re SČ(c) ≃ S re Č(c) ≃ S im c ≃ SM.

imπ is a subtype of csk0 I. By assumption I is discrete, so
csk0 I is discrete, and then imπ is discrete. So we have
exhibited SM as the realization of a discrete simplicial set.

32


