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Spatial Type Theory

Spatial type theory is an extension of HoTT whose intended
models are ‘local toposes’:
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with the outer functors fully faithful.
» b :=Discol is a lex idempotent comonad,
> #:= CoDisco I is an idempotent monad,
» with b - f.
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Spatial type theory is an extension of HoTT whose intended
models are ‘local toposes’:
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with the outer functors fully faithful.
» b :=Discol is a lex idempotent comonad,
> #:= CoDisco I is an idempotent monad,
» with b - f.

In nice settings, there is a type G that “detects connectivity”

{X is b-modal} +—— {X is G-null}

Then [ := (nullification at G) is left adjoint to b.



Examples of Cohesion

“Topological” co-groupoids (say, sheaves on Cartesian spaces):
» [X: Fundamental co-groupoid, topologised discretely
> bX: Discrete retopologization
> #X: Codiscrete retopologization
> Connectivity detected by R



Examples of Cohesion

“Topological” co-groupoids (say, sheaves on Cartesian spaces):
» [X: Fundamental co-groupoid, topologised discretely
> bX: Discrete retopologization
> #X: Codiscrete retopologization
> Connectivity detected by R
Simplicial co-groupoids:
> re X: Realization, as a 0-skeletal simplicial co-groupoid
> skg X: O-skeleton
P> cskg X: O-coskeleton
» Connectivity detected by A[l] (postulated as a total order
with 0 and 1)
From A[1] you can define A[n] := (chains of length n in A[1])
and X, := sko(Aln] = X)...



Spatial Type Theory
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Spatial Type Theory

' A type
CTX-EMPTY CTX-EXT ————————
- Ctx INx: Actx

VAR

Fz:AT'Fz: A
\I'F A type
CTX-EXT-¥ —— —— VAR- ;
Iz ¢ A ctx NaxwAT'Fx: A

Definition. \ T deletes all variables not annotated by

In the dual context formulation, A | T" ctx ~» A | - ctx.



\T'F A type

p-FORM ————————————
' by A type

\T'FM:A

p-INTRO ————————
T MY :boA

\I'F A type Iz:beAFE C type
I'HM:bgA T,u:w AbN:C[’" /z]
L+ (letw”” :== MinN) : C[M/z]

b-ELIM



' A type
f-FORM ——————
'ty A type
'-M:A \I'FN:4sA
f-INTRO ————— f-ELIM
T M :4eA TN, : A
Definition. ¥T' adds the ¥ annotation to every variable in T'.

With dual contexts, A | I' ctx ~» A, T" | - ctx.
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The Goal

We want to prove an internal version of:

Theorem. The homotopy type of a manifold M may be
computed as the realization of a certain simplicial set built from
the Cech complex of any “good” cover.
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The Cech Complex

For f: X — Y, the Cech complex is the simplicial diagram

XXyXXyX

LTLTLT

XXyX

LTl
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The Cech Complex

For f: X — Y, the Cech complex is the simplicial diagram

XXyXXyX

LTLTLT

XXyX

LTl

Definition. The Cech complex C(f) of f is its csko-image:

C(f)==(y:Y) xcsko((z: X) x (fx=1y)).
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The Cech Complex

Proposition. For 0-skeletal X and Y,

Clfn =X xy - xy X = (y:Y) x ((z: X) x (fz =y)""
Proof.
C(f)n

sko(A[n] = C(f))
sko(A[n] = (y:Y) x csko((z : X) x (fr =1y)))

(A
(A
ko((0 = Aln] = Y) x ((i : An]) = esko((2 : X) x (fr = 01))))
(
(

wn

wn

ko((y = Y) x (A[n] = esko((z : X) x (fz =y))))

o((y : V) x csko([n] = (2 X) x (o = 1))
(u:skoY) x let ™0 := winsko([n] = (z: X) x (fz =9)))
(y:Y) x([n] = (z: X) x (fz =y)))

y:Y)x ((z: X) x (fz =y))""
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wn

(
(
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Commuting Cohesions

Add a copy of all the above rules for another annotation .

#\T'F A type #I' - A type
b4-FORM ———————————— f4-FORM —————————
I'bgaA type ' ta A type

16



Commuting Cohesions

Add a copy of all the above rules for another annotation .

#\T'F A type ' A type
b4-FORM ———————————— f4-FORM —————————
I'bgaA type ' ta A type

The possible annotations on variables are {@, ¥, do, Veb}.

o C{V &} o\I'F A type
Iz :e A ctx

CTX-EXT

[,z AT ctx
R
Mo AT'Fx: A

VA
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One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and f)
using no axioms are true also of (by and fy) and (b4 and fa.).
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One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and f)
using no axioms are true also of (by and fy) and (b4 and fa.).

Lemma. be¢ and bg commute.
Proof.

b bq.X—H).'.b X

b

u— let v*% = win (let w** := vinw’*™*)

and vice versa. O
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One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and f)
using no axioms are true also of (by and fy) and (b4 and fa.).

Lemma. be¢ and bg commute.
Proof.

b bq.X—H).'.b X

b

u— let v*% = win (let w** := vinw’*™*)

and vice versa. ]
Lemma. f#¢ and f#4 commute.

Proof. v = vy ﬁ*ﬁ f+ and vice versa. O
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One Cohesion, Two Cohesion

Proposition. Any lemmas and theorems concerning (b and f)
using no axioms are true also of (by and fy) and (b4 and fa.).

Lemma. be¢ and bg commute.
Proof.

b bq.X—H).'.b X

b

u— let v*% = win (let w** := vinw’*™*)

and vice versa. O
Lemma. f#¢ and f#4 commute.
Proof. v = vy ﬁ*ﬁ i+ and vice versa. O

Lemma. [y and [4 commute (when they both exist).
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Red Cohesion, Blue Cohesion

But not everything commutes with everything!
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Red Cohesion, Blue Cohesion

But not everything commutes with everything!

Definition. If types (¢ and H detect connectivity of ¥ and b,
we say ¥ and ¥ are orthogonal when (i is bg-modal and H is
by-modal.
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Red Cohesion, Blue Cohesion

But not everything commutes with everything!

Definition. If types (¢ and H detect connectivity of ¥ and b,
we say ¥ and ¥ are orthogonal when (i is bg-modal and H is

by-modal.
Lemma. If X is [4-modal then fy X is also [4-modal.
Proof.
(H — fv X)
~ fo(H — o X)
~te(beH — X)
~to(H — X) since H was assumed by-modal
~ fe X since X is [g4-modal
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Red Cohesion, Blue Cohesion

Still if ¥ and & are orthogonal,

Proposition. (#e-crisp [y-induction)
ba(DafJv A — B) = ba(ba A — B) is an equivalence for [y-modal
B.

Proof.

bq.(bq.f A— B)

~ ba(fv A — 14.B) by ba A £
~ba(A — faB) by the previous Lemma
~ba(ba A — B) by ba = fa
L]
Lemma. [¢ and bg commute.
Proof. Use the induction principles in both directions. O

Corollary. by and f4 commute.
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Simplicial Real Cohesion

Assume
> satisfies the axioms of Real Cohesion, [ —1b - f;

> & satisfies the axioms of Simplicial Cohesion,
re 4 skg 1 csko;

» They are orthogonal (R is 0-skeletal and A[1] is discrete);
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Simplicial Real Cohesion

Assume
> satisfies the axioms of Real Cohesion, [ —1b - f;

> & satisfies the axioms of Simplicial Cohesion,
re 4 skg 1 csko;

» They are orthogonal (R is 0-skeletal and A[1] is discrete);
» [ is calculated levelwise: (1), : X, — (JX)y is itself a [-unit.
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Definition. A cover of a O-skeletal type M is a family
U:I— (M — Prop) for a discrete 0-skeletal set I so that for
every m : M there is merely an i : I with m € U;.
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Definition. A cover of a 0-skeletal type M is a family
U:I— (M — Prop) for a discrete 0-skeletal set I so that for
every m : M there is merely an i : I with m € U;.

Definition. A cover is good if for any n : N and any k : [n] — I,
the J-shape of

() Uksy = (m: M) x ((i : [n]) = (m € Uygp)))-
]

is a proposition.
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The Projection 7 : C(c) — cskg I

We may assemble a cover into a single surjective map
c: ;. Ui = M, where

| |Ui = (1) x (m: M) x (m € Uy).
i1

Then there is a projection 7 : C(¢) — csko I

CXMCXMC I xIxI

R I R L R A
CXMC I xI
() 11l

c 1
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The Good Cover Theorem

Lemma. U is a good cover iff the restriction 7 : C(c) — im 7 is
a J-unit.

By an axiom, it suffices to check this on simplices, and we have
a convenient description of C(c),

Theorem. reimm ~ [M

Proof. The previous says that im 7 ~ [C(c), then

reimm ~ re[C(c) ~ [reC(c) ~ [imc ~ [M.

im 7 is a subtype of cskg I. By assumption [ is discrete, so
cskg I is discrete, and then im 7 is discrete. So we have
exhibited [M as the realization of a discrete simplicial set.
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