Commuting Cohesions

David Jaz Myers and Mitchell Riley

CQTS New York University Abu Dhabi

22nd May 2023

Spatial Type Theory

Spatial type theory is an extension of HoTT whose intended models are 'local toposes':

with the outer functors fully faithful.

- ▶ \flat := Disc \circ Γ is a lex idempotent comonad,
- ▶ $\sharp := \text{CoDisc} \circ \Gamma$ is an idempotent monad,
- ▶ with $\flat \dashv \sharp$.

In nice settings, there is a type G that "detects connectivity"

 $\{X \text{ is } \flat \text{-modal}\} \longleftrightarrow \{X \text{ is } G\text{-null}\}$

Then $\int :\equiv$ (nullification at G) is left adjoint to \flat .

Spatial Type Theory

Spatial type theory is an extension of HoTT whose intended models are 'local toposes':

with the outer functors fully faithful.

▶ \flat := Disc \circ Γ is a lex idempotent comonad,

▶
$$\sharp := \text{CoDisc} \circ \Gamma$$
 is an idempotent monad,

▶ with $\flat \dashv \sharp$.

In nice settings, there is a type G that "detects connectivity"

$$\{X \text{ is } \flat\text{-modal}\} \longleftrightarrow \{X \text{ is } G\text{-null}\}$$

Then $\int :\equiv$ (nullification at G) is left adjoint to \flat .

"Topological" ∞ -groupoids (say, sheaves on Cartesian spaces):

- $\blacktriangleright \int X$: Fundamental ∞-groupoid, topologised discretely
- ▶ $\flat X$: Discrete retopologization
- ▶ #X: Codiscrete retopologization
- \blacktriangleright Connectivity detected by $\mathbb R$

Simplicial ∞ -groupoids:

- ▶ re X: Realization, as a 0-skeletal simplicial ∞ -groupoid
- ▶ $\mathsf{sk}_0 X$: 0-skeleton
- ▶ $\mathsf{csk}_0 X$: 0-coskeleton
- ► Connectivity detected by ∆[1] (postulated as a total order with 0 and 1)

From $\Delta[1]$ you can define $\Delta[n] :\equiv$ (chains of length n in $\Delta[1]$) and $X_n :\equiv \mathsf{sk}_0(\Delta[n] \to X)...$ "Topological" ∞ -groupoids (say, sheaves on Cartesian spaces):

- $\blacktriangleright \int X$: Fundamental ∞-groupoid, topologised discretely
- ▶ $\flat X$: Discrete retopologization
- ▶ #X: Codiscrete retopologization
- \blacktriangleright Connectivity detected by $\mathbb R$

Simplicial ∞ -groupoids:

- ▶ re X: Realization, as a 0-skeletal simplicial ∞-groupoid
- ▶ $\mathsf{sk}_0 X$: 0-skeleton
- ▶ $\mathsf{csk}_0 X$: 0-coskeleton
- ► Connectivity detected by ∆[1] (postulated as a total order with 0 and 1)

From $\Delta[1]$ you can define $\Delta[n] :\equiv$ (chains of length n in $\Delta[1]$) and $X_n :\equiv \mathsf{sk}_0(\Delta[n] \to X)...$

$$\begin{array}{c} \text{CTX-EMPTY} & \hline & \\ \hline & & \\ \text{CTX-EXT-CRISP} & \frac{\Delta \mid \cdot \vdash A \; \text{type}}{\Delta, x : A \mid \cdot \; \text{ctx}} & \\ \end{array} \qquad \begin{array}{c} \text{CTX-EXT} \; \frac{\Delta \mid \Gamma \vdash A \; \text{type}}{\Delta \mid \Gamma, x : A \; \text{ctx}} \end{array}$$

VAR-CRISP
$$\overline{\Delta, x : A, \Delta' \mid \Gamma \vdash x : A}$$

$$\operatorname{VAR} \, \overline{\Delta \mid \Gamma, x : A, \Gamma' \vdash x : A}$$

$$\flat$$
-FORM \checkmark

-FORM
$$\frac{\mathbf{V} \setminus \Gamma \vdash A \text{ type}}{\Gamma \vdash \mathbf{b}_{\mathbf{V}}A \text{ type}}$$

$$\flat\text{-INTRO} \frac{\blacktriangledown \backslash \Gamma \vdash M : A}{\Gamma \vdash M^{\flat_{\blacktriangledown}} : \flat_{\blacktriangledown}A}$$

$$\flat_{\text{-ELIM}} \frac{ \bigvee \Gamma \vdash A \text{ type } \Gamma, x : \flat_{\bigvee} A \vdash C \text{ type } }{\Gamma \vdash M : \flat_{\bigvee} A \quad \Gamma, u :_{\bigvee} A \vdash N : C[u^{\flat_{\bigvee}}/x] }{\Gamma \vdash (\text{let } u^{\flat_{\bigvee}} := M \text{ in } N) : C[M/x] }$$

$$\sharp\text{-FORM} \frac{\bigvee \Gamma \vdash A \text{ type}}{\Gamma \vdash \sharp_{\bigvee} A \text{ type}}$$
$$\sharp\text{-INTRO} \frac{\bigvee \Gamma \vdash M : A}{\Gamma \vdash M^{\sharp_{\bigvee}} : \sharp_{\bigvee} A} \qquad \qquad \sharp\text{-ELIM} \frac{\bigvee \backslash \Gamma \vdash N : \sharp_{\bigvee} A}{\Gamma \vdash N_{\sharp_{\bigvee}} : A}$$

Definition. $\mathbf{\Psi}\Gamma$ adds the $\mathbf{\Psi}$ annotation to every variable in Γ .

With dual contexts, $\Delta \mid \Gamma \operatorname{ctx} \rightsquigarrow \Delta, \Gamma \mid \cdot \operatorname{ctx}$.

We want to prove an internal version of:

Theorem. The homotopy type of a manifold M may be computed as the realization of a certain simplicial set built from the Čech complex of any "good" cover. For $f: X \to Y$, the Čech complex is the simplicial diagram

$$\begin{array}{c} \vdots \\ X \times_Y X \times_Y X \\ \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ X \times_Y X \\ \downarrow \uparrow \downarrow \\ X \end{array}$$

٠

Definition. The Čech complex $\check{\mathsf{C}}(f)$ of f is its csk_0 -image: $\check{\mathsf{C}}(f) :\equiv (y:Y) \times \mathsf{csk}_0((x:X) \times (fx = y)).$ For $f: X \to Y$, the Čech complex is the simplicial diagram

$$\begin{array}{c} \vdots \\ X \times_Y X \times_Y X \\ \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ X \times_Y X \\ \downarrow \uparrow \downarrow \\ X \end{array}$$

٠

Definition. The Čech complex $\check{\mathsf{C}}(f)$ of f is its csk_0 -image: $\check{\mathsf{C}}(f) :\equiv (y:Y) \times \mathsf{csk}_0((x:X) \times (fx = y)).$

The Čech Complex

Proposition. For 0-skeletal X and Y,

$$\check{\mathsf{C}}(f)_n \simeq X \times_Y \cdots \times_Y X \simeq (y:Y) \times ((x:X) \times (fx=y))^{n+1}$$

Proof.

$$\begin{split} \check{\mathsf{C}}(f)_n \\ &:\equiv \mathsf{sk}_0(\Delta[n] \to \check{\mathsf{C}}(f)) \\ &\equiv \mathsf{sk}_0(\Delta[n] \to (y:Y) \times \mathsf{csk}_0((x:X) \times (fx=y))) \\ &\simeq \mathsf{sk}_0((\sigma:\Delta[n] \to Y) \times ((i:\Delta[n]) \to \mathsf{csk}_0((x:X) \times (fx=\sigma i)))) \\ &\simeq \mathsf{sk}_0((y:Y) \times (\Delta[n] \to \mathsf{csk}_0((x:X) \times (fx=y)))) \\ &\simeq \mathsf{sk}_0((y:Y) \times \mathsf{csk}_0([n] \to (x:X) \times (fx=y))) \\ &\simeq ((u:\mathsf{sk}_0Y) \times \mathsf{let} \ y^{\mathsf{sk}_0} := u \, \mathsf{in} \, \mathsf{sk}_0([n] \to (x:X) \times (fx=y))) \\ &\simeq ((y:Y) \times ([n] \to (x:X) \times (fx=y))) \\ &\simeq (y:Y) \times ((x:X) \times (fx=y))^{n+1} \end{split}$$

Commuting Cohesions

Add a copy of all the above rules for another annotation \clubsuit .

. . .

The possible annotations on variables are $\{\emptyset, \mathbf{V}, \mathbf{\Phi}, \mathbf{V}\mathbf{\Phi}\}$.

$$CTX-EXT \xrightarrow{\bullet \subseteq \{\heartsuit, \clubsuit\}} \bullet \setminus \Gamma \vdash A \text{ type}$$
$$\Gamma, x :_{\bullet} A \text{ ctx}$$

$$\operatorname{VAR} \frac{\Gamma, x : \bullet A, \Gamma' \operatorname{ctx}}{\Gamma, x : \bullet A, \Gamma' \vdash x : A}$$

Add a copy of all the above rules for another annotation \clubsuit .

$$\flat_{\bullet}\text{-FORM} \frac{\spadesuit \setminus \Gamma \vdash A \text{ type}}{\Gamma \vdash \flat_{\bullet}A \text{ type}} \qquad \qquad \sharp_{\bullet}\text{-FORM} \frac{\clubsuit \Gamma \vdash A \text{ type}}{\Gamma \vdash \sharp_{\bullet}A \text{ type}}$$

. . .

$$\begin{array}{l} {}_{\mathrm{CTX-EXT}} \underbrace{\bullet \subseteq \{ \blacktriangledown, \bullet \}} \quad \bullet \setminus \Gamma \vdash A \text{ type} \\ \overline{\Gamma, x} :_{\bullet} A \text{ ctx} \\ \\ {}_{\mathrm{VAR}} \frac{\Gamma, x :_{\bullet} A, \Gamma' \text{ ctx}}{\Gamma, x :_{\bullet} A, \Gamma' \vdash x : A} \end{array}$$

Proposition. Any lemmas and theorems concerning $(\flat \text{ and } \sharp)$ using no axioms are true also of $(\flat_{\heartsuit} \text{ and } \sharp_{\diamondsuit})$ and $(\flat_{\clubsuit} \text{ and } \sharp_{\clubsuit})$. Lemma. \flat_{\heartsuit} and \flat_{\clubsuit} commute. Proof.

$$\begin{split} \flat_{\Psi} \flat_{\Phi} X &\to \flat_{\Phi} \flat_{\Psi} X \\ u &\mapsto \mathsf{let} \ v^{\flat_{\Psi}} := u \mathsf{in} \left(\mathsf{let} \ w^{\flat_{\Phi}} := v \mathsf{in} \ w^{\flat_{\Psi} \flat_{\Phi}} \right) \end{split}$$

and vice versa.

Lemma. \sharp_{Ψ} and \sharp_{Φ} commute. Proof. $v \mapsto v_{\sharp_{\Psi} \sharp_{\Phi}} \stackrel{\sharp_{\Psi}}{=} and$ vice versa. Lemma. \int_{Ψ} and \int_{Φ} commute (when they both exist) Proposition. Any lemmas and theorems concerning $(\flat \text{ and } \sharp)$ using no axioms are true also of $(\flat_{\forall} \text{ and } \sharp_{\forall})$ and $(\flat_{\bullet} \text{ and } \sharp_{\bullet})$. Lemma. \flat_{\forall} and \flat_{\bullet} commute.

$$\begin{split} \flat_{\Psi} \flat_{\clubsuit} X \to \flat_{\clubsuit} \flat_{\Psi} X \\ u \mapsto \text{let } v^{\flat_{\Psi}} := u \text{ in } (\text{let } w^{\flat_{\clubsuit}} := v \text{ in } w^{\flat_{\Psi} \flat_{\clubsuit}}) \end{split}$$

and vice versa.

Lemma. \sharp_{Ψ} and \sharp_{\bullet} commute. Proof. $v \mapsto v_{\sharp_{\Psi} \sharp_{\bullet}} \stackrel{\sharp_{\Psi}}{=} \bullet$ and vice versa. Lemma. \int_{Ψ} and \int_{\bullet} commute (when they both exist). Proposition. Any lemmas and theorems concerning $(\flat \text{ and } \sharp)$ using no axioms are true also of $(\flat_{\forall} \text{ and } \sharp_{\forall})$ and $(\flat_{\bullet} \text{ and } \sharp_{\bullet})$. Lemma. \flat_{\forall} and \flat_{\bullet} commute.

$$\begin{split} \flat_{\Psi} \flat_{\clubsuit} X &\to \flat_{\clubsuit} \flat_{\Psi} X \\ u &\mapsto \mathsf{let} \ v^{\flat_{\Psi}} := u \mathsf{in} \left(\mathsf{let} \ w^{\flat_{\clubsuit}} := v \mathsf{in} \ w^{\flat_{\Psi} \flat_{\clubsuit}} \right) \end{split}$$

and vice versa.

Lemma. \sharp_{Ψ} and \sharp_{\bullet} commute. Proof. $v \mapsto v_{\sharp_{\Psi} \sharp_{\bullet}}^{\sharp_{\Psi} \sharp_{\bullet}}$ and vice versa. Lemma. \int_{Ψ} and \int_{\bullet} commute (when they both exist) Proposition. Any lemmas and theorems concerning $(\flat \text{ and } \sharp)$ using no axioms are true also of $(\flat_{\forall} \text{ and } \sharp_{\forall})$ and $(\flat_{\bullet} \text{ and } \sharp_{\bullet})$. Lemma. \flat_{\forall} and \flat_{\bullet} commute.

$$\begin{split} \flat_{\Psi} \flat_{\clubsuit} X &\to \flat_{\clubsuit} \flat_{\Psi} X \\ u &\mapsto \mathsf{let} \ v^{\flat_{\Psi}} := u \mathsf{in} \left(\mathsf{let} \ w^{\flat_{\clubsuit}} := v \mathsf{in} \ w^{\flat_{\Psi} \flat_{\clubsuit}} \right) \end{split}$$

and vice versa.

Lemma. \sharp_{\forall} and \sharp_{\bullet} commute. Proof. $v \mapsto v_{\sharp_{\forall} \sharp_{\bullet}}^{\dagger_{\diamond}} = 1$ and vice versa. Lemma. \int_{\forall} and \int_{\bullet}^{\bullet} commute (when they both exist).

But not everything commutes with everything!

Definition. If types G and H detect connectivity of \forall and \blacklozenge , we say \forall and \blacklozenge are *orthogonal* when G is \flat_{\diamondsuit} -modal and H is \flat_{\diamondsuit} -modal.

Lemma. If X is \int_{Φ} -modal then $\sharp_{\Psi}X$ is also \int_{Φ} -modal. Proof.

$$\begin{array}{l} (H \to \sharp_{\P} X) \\ \simeq & \sharp_{\P} (H \to \sharp_{\P} X) \\ \simeq & \sharp_{\P} (\flat_{\P} H \to X) \\ \simeq & \sharp_{\P} (H \to X) \end{array} \quad \text{since } H \text{ was assumed } \flat_{\P} \text{-modal} \\ \simeq & \sharp_{\P} X \qquad \qquad \text{since } X \text{ is } \int_{\P} \text{-modal} X \end{array}$$

But not everything commutes with everything!

Definition. If types G and H detect connectivity of \forall and \blacklozenge , we say \forall and \blacklozenge are *orthogonal* when G is \flat_{\diamondsuit} -modal and H is $\flat_{\blacktriangledown}$ -modal.

Lemma. If X is \int_{Φ} -modal then $\sharp \bigvee X$ is also \int_{Φ} -modal. Proof.

$$\begin{array}{l} (H \to \sharp_{\P} X) \\ \simeq & \sharp_{\P} (H \to \sharp_{\P} X) \\ \simeq & \sharp_{\P} (\flat_{\P} H \to X) \\ \simeq & \sharp_{\P} (H \to X) \end{array} \quad \text{since } H \text{ was assumed } \flat_{\P} \text{-modal} \\ \simeq & \sharp_{\P} X \qquad \qquad \text{since } X \text{ is } \int_{\P} \text{-modal} X \end{array}$$

But not everything commutes with everything!

Definition. If types G and H detect connectivity of \forall and \blacklozenge , we say \forall and \clubsuit are *orthogonal* when G is \flat_{\diamondsuit} -modal and H is $\flat_{\blacktriangledown}$ -modal.

Lemma. If X is \int_{Φ} -modal then $\sharp_{\Psi}X$ is also \int_{Φ} -modal. Proof.

$$\begin{array}{l} (H \to \sharp_{\blacktriangledown} X) \\ \simeq & \sharp_{\blacktriangledown} (H \to \sharp_{\blacktriangledown} X) \\ \simeq & \sharp_{\blacktriangledown} (b_{\blacktriangledown} H \to X) \\ \simeq & \sharp_{\blacktriangledown} (H \to X) \\ \simeq & \sharp_{\blacktriangledown} (H \to X) \end{array} \quad \text{since } H \text{ was assumed } b_{\blacktriangledown} \text{-modal} \\ \simeq & \sharp_{\blacktriangledown} X \qquad \qquad \text{since } X \text{ is } \int_{\clubsuit} \text{-modal} \end{array}$$

Red Cohesion, Blue Cohesion

Still if \forall and \Leftrightarrow are orthogonal,

Proposition. (\clubsuit -crisp \int_{Ψ} -induction) $\flat_{\clubsuit}(\flat_{\clubsuit}\int_{\Psi}A \to B) \to \flat_{\clubsuit}(\flat_{\clubsuit}A \to B)$ is an equivalence for \int_{Ψ} -modal B.

Proof.

$$\begin{split} \flat_{\bullet}(\flat_{\bullet} \int_{\bullet} A \to B) \\ \simeq \flat_{\bullet}(\int_{\bullet} A \to \sharp_{\bullet} B) \\ \simeq \flat_{\bullet}(A \to \sharp_{\bullet} B) \\ \simeq \flat_{\bullet}(A \to \sharp_{\bullet} B) \end{split} \qquad by \ \flat_{\bullet} \dashv \sharp_{\bullet} \\ by \ \flat_{\bullet} \dashv \sharp_{\bullet} \end{aligned}$$

Lemma. $\int \varphi$ and \flat_{ϕ} commute. Proof. Use the induction principles in both directions. Corollary. \flat_{ψ} and \sharp_{ϕ} commute.

Assume

- ▶ ♥ satisfies the axioms of Real Cohesion, $\int \neg b \neg \sharp$;
- ▶ \clubsuit satisfies the axioms of Simplicial Cohesion, re \dashv sk₀ \dashv csk₀;
- ▶ They are orthogonal (\mathbb{R} is 0-skeletal and $\Delta[1]$ is discrete);
- ▶ \int is calculated levelwise: $(\eta)_n : X_n \to (\int X)_n$ is itself a \int -unit.

Assume

- ▶ ♥ satisfies the axioms of Real Cohesion, $\int \neg b \neg \sharp$;
- ▶ \clubsuit satisfies the axioms of Simplicial Cohesion, re \dashv sk₀ \dashv csk₀;
- ▶ They are orthogonal (\mathbb{R} is 0-skeletal and $\Delta[1]$ is discrete);
- ▶ \int is calculated levelwise: $(\eta)_n : X_n \to (\int X)_n$ is itself a \int -unit.

Good Covers

Definition. A cover of a 0-skeletal type M is a family $U: I \to (M \to \mathbf{Prop})$ for a discrete 0-skeletal set I so that for every m: M there is merely an i: I with $m \in U_i$.

Definition. A cover is good if for any $n : \mathbb{N}$ and any $k : [n] \to I$, the \int -shape of

$$\bigcap_{i:[n]} U_{k(i)} :\equiv (m:M) \times ((i:[n]) \to (m \in U_{k(i)})).$$

is a proposition.

Good Covers

Definition. A cover of a 0-skeletal type M is a family $U: I \to (M \to \mathbf{Prop})$ for a discrete 0-skeletal set I so that for every m: M there is merely an i: I with $m \in U_i$.

Definition. A cover is *good* if for any $n : \mathbb{N}$ and any $k : [n] \to I$, the \int -shape of

$$\bigcap_{i:[n]} U_{k(i)} :\equiv (m:M) \times ((i:[n]) \to (m \in U_{k(i)})).$$

is a proposition.

The Projection $\pi: \check{\mathsf{C}}(c) \to \operatorname{csk}_0 I$

We may assemble a cover into a single surjective map $c: \bigsqcup_{i:I} U_i \to M$, where

$$\bigsqcup_{i:I} U_i :\equiv (i:I) \times (m:M) \times (m \in U_i).$$

Then there is a projection $\pi : \check{\mathsf{C}}(c) \to \operatorname{\mathsf{csk}}_0 I$

Lemma. U is a good cover iff the restriction $\pi : \check{\mathsf{C}}(c) \to \operatorname{im} \pi$ is a \int -unit.

By an axiom, it suffices to check this on simplices, and we have a convenient description of $\check{\mathsf{C}}(c)_n$

Theorem. reim $\pi \simeq \int M$

Proof. The previous says that im $\pi \simeq \int \check{C}(c)$, then

$$\operatorname{reim} \pi \simeq \operatorname{re} \int \check{\mathsf{C}}(c) \simeq \int \operatorname{re} \check{\mathsf{C}}(c) \simeq \int \operatorname{im} c \simeq \int M.$$

 $\operatorname{im} \pi$ is a subtype of $\operatorname{csk}_0 I$. By assumption I is discrete, so $\operatorname{csk}_0 I$ is discrete, and then $\operatorname{im} \pi$ is discrete. So we have exhibited $\int M$ as the realization of a discrete simplicial set.