
Combining Bunched Type Theory
with Dependent Types

Mitchell Riley
Wesleyan University

jww. Dan Licata
Wesleyan University

1st February 2022

1

Introduction

I In Computer Science, type theories are often created first
and then categorical semantics are devised for them.

I Today, an example of the backwards direction: we have a
categorical structure in mind, and want a type theory.

I Goal: a practical type theory for working with
‘parameterised spectra’ which form a category that is both
locally cartesian closed, and also monoidal closed.

2

Curry-Howard-Lambek Correspondences

3

The Simply Typed λ-Calculus

Γ, x : A,Γ′ ` x : A

Γ ` a : A Γ ` b : B

Γ ` (a, b) : A×B

Γ ` p : A×B
Γ, x : A, y : B ` c : C

Γ ` let (x, y) = p in c : C

Γ, x : A ` b : B

Γ ` λx.b : A→ B

Γ ` f : A→ B Γ ` a : A

Γ ` f(a) : B

These rules (and some omitted equations) present the free
cartesian closed category on a set of objects.

4

Eg: Symmetry

Proposition

sym : A×B → B ×A

Proof.
To define sym : A×B → B ×A, suppose we have p : A×B.
Then splitting allows us to assume p ≡ (x, y) and we then have
(y, x).

sym :≡ λp.let (x, y) = p in (y, x)

5

Interpretation

I Each type A is interpreted as an object JAK
I Each term x1 : A1, . . . xn : An ` b : B is interpreted as a

morphism
JbK : JA1K× · · · × JAnK→ JBK

6

Curry-Howard-Lambek Correspondence

Type Theory Categorical Structure

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Dependent Type Theory
with 1, Σ and Extensional =

Finitely Complete Categories

... and Π Locally Cartesian Closed Categories

... and 0, +, Prop, Axioms Elementary Topos

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Multiplicative Intuitionistic
Linear Logic

Monoidal Closed Categories

Classical Linear Logic ∗-Autonomous Categories

This Type Theory LCCC + Monoidal Closed

7

Dependent Type Theory

Type theory can be made more expressive by allowing types to
depend on terms: Γ ` A type.

Example

The set of days in a month depends on which month we are
talking about: x : Month ` DayOf(x) type

Example

Each point of a differentiable manifold has a tangent space:
x : M ` TxM type

8

Dependent Type Theory

The product type can be generalised to dependent pairs:

Σ-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)×B(x) type

Σ-intro
Γ ` a : A Γ ` b : B(a)

Γ ` (a, b) : (x : A)×B(x)

. . .

Example

The dependent pair type (x : Month)× DayOf(x) is type of all
days in the year.

The dependent pair type (x : M)× TxM is the tangent bundle
TM .

9

Dependent Type Theory

A type of equalities is expressible:

=-form
Γ ` a : A Γ ` a′ : A

Γ ` a = a′ type

=-intro
Γ ` a : A

Γ ` refla : a = a

. . .

10

Interpretation

I A type Γ ` A type is interpreted as an object JAK of the
slice C/JΓK

I The context Γ, x : A is interpreted as the object JAK of C.
I A term Γ ` a : A is interpreted as a morphism

JaK : idJΓK → JAK in C/JΓK

I The type (x : A)×B is interpreted as the composite

JBK→ JAK→ JΓK

in C/JΓK.

I The type a = a′ is interpreted as the diagonal

JAK→ JAK×JΓK JAK

pulled back along the map JΓK→ JAK×JΓK JAK induced by
JaK and Ja′K

11

Curry-Howard-Lambek Correspondence

Type Theory Categorical Structure

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Dependent Type Theory
with 1, Σ and Extensional =

Finitely Complete Categories

... and Π Locally Cartesian Closed Categories

... and 0, +, Prop, Axioms Elementary Topos

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Multiplicative Intuitionistic
Linear Logic

Monoidal Closed Categories

Classical Linear Logic ∗-Autonomous Categories

This Type Theory LCCC + Monoidal Closed

12

Dependent Type Theory

Similarly for dependent functions:

Π-form
Γ ` A type Γ, x : A ` B(x) type

Γ ` (x : A)→ B(x) type

Π-elim
Γ ` f : (x : A)→ B(x) Γ ` a : A

Γ ` f(a) : B(a)

. . .

Example

The dependent function type (x : Month)→ DayOf(x) is a
choice of one day from each month.

The dependent function type (x : M)→ TxM is a vector field.
(sort of, one would need to think carefully about continuity)

13

Symmetry Again

Proposition

symX,Y : X × Y → Y ×X is an equivalence.

(‘f an equivalence’ means that there are g and g′ so that
pointwise f ◦ g = id and g′ ◦ f = id.)

Proof.
Its inverse is symY,X . To prove∏

(p:A×B)symY,X(symX,Y (p)) = p,

use splitting: the goal reduces to (x, y) = (x, y) for which we
have reflexivity.

14

Interpretation

Weakening is interpreted by a pullback:

JAK∗ : C/JΓK → C/JΓ,x:AK

Σ and Π are interpreted in the category as the left- and
right-adjoint to weakening.

C/JΓK C/JΓ,x:AK
⊥

⊥

Π

Σ

15

Curry-Howard-Lambek Correspondence

Type Theory Categorical Structure

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Dependent Type Theory
with 1, Σ and Extensional =

Finitely Complete Categories

... and Π Locally Cartesian Closed Categories

... and 0, +, Prop, Axioms Elementary Topos

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Multiplicative Intuitionistic
Linear Logic

Monoidal Closed Categories

Classical Linear Logic ∗-Autonomous Categories

This Type Theory LCCC + Monoidal Closed

16

Multiplicative Intuitionistic Linear Logic

x : A ` x : A

Γ ` a : A Γ′ ` b : B

Γ,Γ′ ` (a⊗ b) : A⊗B

Γ′ ` p : A⊗B
Γ, x : A, y : B ` c : C

Γ,Γ′ ` let (x⊗ y) = p in c : C

Γ, x : A ` b : B

Γ ` ∂x.b : A(B

Γ ` f : A(B Γ′ ` a : A

Γ,Γ′ ` f(a) : B

17

Eg: Symmetry

Proposition

sym : A⊗B (B ⊗A

Proof.
Suppose p : A⊗B. Then splitting allows us to assume
p ≡ (x⊗ y), and we then have (y ⊗ x).

sym :≡ ∂p.let (x⊗ y) = p in (y ⊗ x)

18

Non-Eg: Diagonal and Projection

We cannot define ∆ : A(A⊗A.

After assuming x : A, the term x⊗ x : A⊗A is not well-formed:
only one side of the ⊗ is permitted to use x.

We cannot define π1 : A⊗B (A.

After assuming p : A⊗B and using splitting to obtain x : A
and y : B, we cannot conclude x : A, because y : B is unused.

19

Interpretation

I Each type A is interpreted as an object JAK
I Each term x1 : A1, . . . xn : An ` b : B is interpreted as a

morphism
JbK : JA1K⊗ · · · ⊗ JAnK→ JBK

20

Curry-Howard-Lambek Correspondence

Type Theory Categorical Structure

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Dependent Type Theory
with 1, Σ and Extensional =

Finitely Complete Categories

... and Π Locally Cartesian Closed Categories

... and 0, +, Prop, Axioms Elementary Topos

Simply Typed
Lambda Calculus

Cartesian Closed Categories

Multiplicative Intuitionistic
Linear Logic

Monoidal Closed Categories

Classical Linear Logic ∗-Autonomous Categories

This Type Theory LCCC + Monoidal Closed

21

Our Setting

22

The Motivation

Our goal was to use type theory to reason about ‘spectra’, in
the sense of stable homotopy theory.

These form a symmetric monoidal closed ∞-category
(Spec, S,⊗,().

Think of the 1-category (Set•,Bool,∧,→•).

These are models of linear logic.

23

Families

Definition
If C is a category, the category PC of parameterised families of
C has

I Objects given by (X, {Ex}x∈X) where X is a set and Ex is
an object of C for each x ∈ X.

I Morphisms (X, {Ex})→ (Y, {Fy}) given by a pair (f, {fx})
where f : X → Y is a function and fx : Ex → Ff(x) is a
morphism of C for every x ∈ X.

24

Families

If C is monoidal closed, then PC is monoidal closed with the
‘external monoidal product’ ⊗.

⊗

In favourable conditions, PC is also locally cartesian closed.
(For example, when C is LCCC, but in some other unexpected
cases too)

25

Families

(PSpec,S,⊗,()

(S, 1,×,→)

a a0 0

(PSet•,Bool,∧, →•)

(Set, 1,×,→)

a a0 0

(PM, I,⊗,()

(Set, 1,×,→)

] a q

26

Linearity and Dependency

Linearity + dependency has been done before, but:

I Indexed type theories (Vákár 2014; Krishnaswami, Pradic,
and Benton 2015; Isaev 2021) have semantics in indexed
monoidal categories,

I Quantitative type theories (McBride 2016; Atkey 2018;
Moon, Eades III, and Orchard 2021; Fu, Kishida, and
Selinger 2020) have restricted dependency for Σ and Π,

I Existing dependent ‘bunched’ type theories (Schöpp 2006;
Schöpp and Stark 2004; Cheney 2009; Cheney 2012)
require I = 1.

27

Type Theory

28

The Symmetry Proof We Want

Proposition

sym : A⊗B ' B ⊗A

Proof.
To define sym : A⊗B → B ⊗A, suppose we have p : A⊗B.
Then ⊗-induction allows us to assume p ≡ x⊗ y, and we have
y ⊗ x.

sym :≡ λp.let x⊗ y = p in y ⊗ x

Then to prove
∏

(p:A⊗B) sym(sym(p)) = p, use ⊗-induction
again: the goal reduces to x⊗ y = x⊗ y for which we have
reflexivity.

inv :≡ λp.let x⊗ y = p in reflx⊗y

29

Colourful Variables

We need to prevent terms like λx.x⊗ x : A→ A⊗A, so
variable use needs to be restricted somehow.

I Every variable x has a colour c.

I The relationships between colours are collected in a palette.

Palettes Φ are constructed by

1 Φ1 ⊗ Φ2 Φ1,Φ2 c c ≺ Φ

Typical palettes:

p ≺ r⊗ b w ≺ (p ≺ r⊗ b)⊗ y p ≺ (r⊗ b, r′ ⊗ b′)

(Similar to ‘bunched’ type theory P. W. O’Hearn and Pym
1999; P. O’Hearn 2003)

30

Using Colourful Variables

Building a term, we need to keep track of the current ‘top
colour’. Suppose the palette is p ≺ r⊗ b, and we have variables

xr : A, yb : B, zp : C.

I The top colour here is p.

I The only variable that can be used currently is z : C.
(Using x here would correspond to a projection from one
side of a tensor.)

I Ordinary type formers bind variables with the current top
colour:

(x : A)×B(x) (x : A)→ B(x) (λx.b)

I The rules for ⊗ will grant us access to the other variables.

31

Tensor

Say the top colour is p.

I Formation: For any closed (for now) types A and B we
can form the type A⊗B.

I Introduction: Whenever we can split p into two colours
red and blue, use red to prove a and blue variables to prove
b, then we have a⊗ b : A⊗B.

I Elimination: If something holds for a generic tensor pair
x⊗ y, then it holds for any particular p : A⊗B.

32

Eg: Symmetry

Proposition

There is a function sym : A⊗B → B ⊗A

Proof.
Suppose have p : A⊗B. Then ⊗-induction on p gives xr : A
and yb : B, where p ≺ r⊗ b.

Split p into b and r. Then we can form y ⊗b r x : B ⊗A.

sym :≡ λp.let x ⊗r b y = p in y ⊗b r x

33

Non-Eg: Colour Clashes

I We cannot define ∆ : A→ A⊗A in general.

Given a : A, forming a⊗ a : A⊗A is not allowed: the two
inputs to ⊗-intro are not well-formed in separate pieces of
the palette.

I We cannot define e : (A⊗ (A→ B))→ B in general.

We can destruct a term of A⊗ (A→ B) into x : A and
f : A→ B, but f(x) is not well formed: neither variable
has the top colour, so can’t be used.

34

Eg: Tensors and Ordinary Types

I Once we have access to a variable, we can use it however
we like:

λp.let x⊗ y = p in (x, x)⊗ y : A⊗B → (A×A)⊗B

I Using ⊗-elimination does not ‘consume’ the variable being
inspected. If f : C ⊗ C → N we can do:

λp.let z ⊗ w = p in f(p) + f(w ⊗ z) : C ⊗ C → N

35

Hom

Γ×A ` B

Γ ` A→ B
==========

Γ⊗A ` B

Γ ` A(B
===========

36

Hom

Γ× (x : A) ` b : B

Γ ` λx.b : (x : A)→ B
=====================

Γ⊗ (y : A) ` b : B

Γ ` ∂y.b : (y : A) (B
=====================

37

Underlying Space

For every type A there is a type \A that deletes the C
information.

38

Marked Variables

Solved by using ‘marked variables’ x : A, a second way of using
variables.

This lets us add dependency to ⊗: we can form

I If A and B are types where all free variables in A and B
are marked, then we can form A⊗B.

I Additionally, B can be allowed to use a variable x : A
marked, and we can form (x : A)⊗B.

(A ‘sublocal monoidal closed structure’, in the language of Fu,
Kishida, and Selinger 2020.)

39

Conclusion

I The dependency of Σ, = and Π are exactly as in ordinary
dependent type theory.

I The dependency of ⊗ and (is mediated by \.

I The two worlds coexist, giving a very expressive type
theory!

Thanks!

40

References I

Robert Atkey (2018). “Syntax and Semantics of Quantitative Type
Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. doi:
10.1145/3209108.3209189.

James Cheney (2009). “A Simple Nominal Type Theory”. In:
Proceedings of the International Workshop on Logical Frameworks
and Metalanguages: Theory and Practice (LFMTP 2008).
Vol. 228. doi: 10.1016/j.entcs.2008.12.115.

— (2012). “A dependent nominal type theory”. In: Logical Methods
in Computer Science 8.1. doi: 10.2168/LMCS-8(1:8)2012.

Peng Fu, Kohei Kishida, and Peter Selinger (2020). “Linear
Dependent Type Theory for Quantum Programming Languages:
Extended Abstract”. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science. doi:
10.1145/3373718.3394765.

41

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1016/j.entcs.2008.12.115
https://doi.org/10.2168/LMCS-8(1:8)2012
https://doi.org/10.1145/3373718.3394765

References II

Valery Isaev (2021). “Indexed type theories”. In: Mathematical
Structures in Computer Science 31.1. doi:
10.1017/S0960129520000092.

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton (2015).
“Integrating Linear and Dependent Types”. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. doi: 10.1145/2676726.2676969.

Conor McBride (2016). “I Got Plenty o’ Nuttin’”. In: A list of
successes that can change the world. Vol. 9600. doi:
10.1007/978-3-319-30936-1_12.

Benjamin Moon, Harley Eades III, and Dominic Orchard (2021).
“Graded Modal Dependent Type Theory”. In: Programming
Languages and Systems. doi: 10.1007/978-3-030-72019-3_17.

Peter O’Hearn (2003). “On bunched typing”. In: Journal of
Functional Programming 13.4. doi: 10.1017/S0956796802004495.

Peter W. O’Hearn and David J. Pym (1999). “The Logic of Bunched
Implications”. In: Bulletin of Symbolic Logic 5.2. doi:
10.2307/421090.

42

https://doi.org/10.1017/S0960129520000092
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.2307/421090

References III

Ulrich Schöpp (2006). “Names and Binding in Type Theory”.
PhD thesis. University of Edinburgh. url: https:
//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561934.

Ulrich Schöpp and Ian Stark (2004). “A Dependent Type Theory with
Names and Binding”. In: Computer Science Logic. Vol. 3210. doi:
10.1007/978-3-540-30124-0_20.

Matthjis Vákár (2014). Syntax and Semantics of Linear Dependent
Types. arXiv: 1405.0033 [cs.AT].

43

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561934
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561934
https://doi.org/10.1007/978-3-540-30124-0_20
https://arxiv.org/abs/1405.0033

	Curry-Howard-Lambek Correspondences
	Our Setting
	Type Theory
	References

