Combining Bunched Type Theory with Dependent Types

Mitchell Riley Wesleyan University

jww. Dan Licata Wesleyan University

1st February 2022

Introduction

- ▶ In Computer Science, type theories are often created first and then categorical semantics are devised for them.
- ▶ Today, an example of the backwards direction: we have a categorical structure in mind, and want a type theory.
- Goal: a practical type theory for working with 'parameterised spectra' which form a category that is both locally cartesian closed, and also monoidal closed.

Curry-Howard-Lambek Correspondences

The Simply Typed λ -Calculus

$$\Gamma, x : A, \Gamma' \vdash x : A$$

$$\begin{array}{ll} \Gamma \vdash a:A & \Gamma \vdash b:B \\ \hline \Gamma \vdash (a,b):A \times B & \hline \Gamma \vdash a:A, y:B \vdash c:C \\ \hline \Gamma \vdash b:B & \hline \Gamma \vdash b:B \\ \hline \Gamma \vdash \lambda x.b:A \to B & \hline \Gamma \vdash f:A \to B & \Gamma \vdash a:A \\ \hline \Gamma \vdash f(a):B & \hline \Gamma \vdash f(a):B \end{array}$$

These rules (and some omitted equations) present the *free* cartesian closed category on a set of objects.

Proposition

 $\mathsf{sym}:A\times B\to B\times A$

Proof.

To define sym : $A \times B \to B \times A$, suppose we have $p : A \times B$. Then splitting allows us to assume $p \equiv (x, y)$ and we then have (y, x).

sym :
$$\equiv \lambda p$$
.let $(x, y) = p in (y, x)$

- Each type A is interpreted as an object $\llbracket A \rrbracket$
- ► Each term $x_1 : A_1, \ldots x_n : A_n \vdash b : B$ is interpreted as a morphism

$$\llbracket b \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \to \llbracket B \rrbracket$$

Curry-Howard-Lambek Correspondence

Type Theory	Categorical Structure
Simply Typed Lambda Calculus	Cartesian Closed Categories
Dependent Type Theory with 1, Σ and Extensional =	Finitely Complete Categories
and Π	Locally Cartesian Closed Categories
\dots and $0, +$, Prop, Axioms	Elementary Topos
Simply Typed Lambda Calculus	Cartesian Closed Categories
Multiplicative Intuitionistic Linear Logic	Monoidal Closed Categories
Classical Linear Logic	*-Autonomous Categories
This Type Theory	LCCC + Monoidal Closed

Type theory can be made more expressive by allowing types to depend on terms: $\Gamma \vdash A$ type.

Example

The set of days in a month depends on which month we are talking about: $x : \mathsf{Month} \vdash \mathsf{DayOf}(x)$ type

Example

Each point of a differentiable manifold has a tangent space: $x: M \vdash T_x M$ type

Dependent Type Theory

The product type can be generalised to *dependent* pairs:

$$\Sigma\text{-form} \frac{\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type }}{\Gamma \vdash (x : A) \times B(x) \text{ type }}$$

$$\Sigma\text{-intro} \frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B(a)}{\Gamma \vdash (a, b) : (x : A) \times B(x)}$$

. . .

Example

The dependent pair type $(x : Month) \times DayOf(x)$ is type of all days in the year.

The dependent pair type $(x:M) \times T_x M$ is the tangent bundle TM.

A type of equalities is expressible:

=-FORM
$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash a' : A}{\Gamma \vdash a = a'}$$
 type

=-INTRO
$$\frac{\Gamma \vdash a : A}{\Gamma \vdash \mathsf{refl}_a : a = a}$$

. . .

Interpretation

- A type Γ ⊢ A type is interpreted as an object [[A]] of the slice C_{/[[Γ]]}
- The context $\Gamma, x : A$ is interpreted as the object $\llbracket A \rrbracket$ of C.
- ► A term $\Gamma \vdash a : A$ is interpreted as a morphism $\llbracket a \rrbracket : \mathsf{id}_{\llbracket \Gamma \rrbracket} \to \llbracket A \rrbracket$ in $\mathcal{C}_{/\llbracket \Gamma \rrbracket}$
- The type $(x:A) \times B$ is interpreted as the composite

$$\llbracket B \rrbracket \to \llbracket A \rrbracket \to \llbracket \Gamma \rrbracket$$

in $\mathcal{C}_{/\llbracket \Gamma \rrbracket}$.

• The type a = a' is interpreted as the diagonal

$$\llbracket A \rrbracket \to \llbracket A \rrbracket \times_{\llbracket \Gamma \rrbracket} \llbracket A \rrbracket$$

pulled back along the map $[\![\Gamma]\!]\to [\![A]\!]\times_{[\![\Gamma]\!]} [\![A]\!]$ induced by $[\![a]\!]$ and $[\![a']\!]$

Curry-Howard-Lambek Correspondence

Type Theory	Categorical Structure
Simply Typed Lambda Calculus	Cartesian Closed Categories
Dependent Type Theory with 1, Σ and Extensional =	Finitely Complete Categories
and Π	Locally Cartesian Closed Categories
\dots and $0, +$, Prop, Axioms	Elementary Topos
Simply Typed Lambda Calculus	Cartesian Closed Categories
Multiplicative Intuitionistic Linear Logic	Monoidal Closed Categories
Classical Linear Logic	*-Autonomous Categories
This Type Theory	LCCC + Monoidal Closed

Dependent Type Theory

Similarly for *dependent* functions:

$$\Pi\text{-form} \frac{\Gamma \vdash A \text{ type } \Gamma, x : A \vdash B(x) \text{ type }}{\Gamma \vdash (x : A) \to B(x) \text{ type }}$$
$$\Pi\text{-elim} \frac{\Gamma \vdash f : (x : A) \to B(x) \quad \Gamma \vdash a : A}{\Gamma \vdash f(a) : B(a)}$$

. . .

Example

The dependent function type $(x : \mathsf{Month}) \to \mathsf{DayOf}(x)$ is a choice of one day from each month.

The dependent function type $(x: M) \to T_x M$ is a vector field. (sort of, one would need to think carefully about continuity)

Proposition

 $\operatorname{sym}_{X,Y} : X \times Y \to Y \times X$ is an equivalence. ('f an equivalence' means that there are g and g' so that pointwise $f \circ q = \operatorname{id}$ and $q' \circ f = \operatorname{id}$.)

Proof.

Its inverse is $sym_{Y,X}$. To prove

$$\prod_{(p:A\times B)} \mathsf{sym}_{Y,X}(\mathsf{sym}_{X,Y}(p)) = p,$$

use splitting: the goal reduces to (x, y) = (x, y) for which we have reflexivity.

Interpretation

Weakening is interpreted by a pullback:

$$\llbracket A \rrbracket^* : \mathcal{C}_{/\llbracket \Gamma \rrbracket} \to \mathcal{C}_{/\llbracket \Gamma, x: A \rrbracket}$$

 Σ and Π are interpreted in the category as the left- and right-adjoint to weakening.

Curry-Howard-Lambek Correspondence

Type Theory	Categorical Structure
Simply Typed Lambda Calculus	Cartesian Closed Categories
Dependent Type Theory with 1, Σ and Extensional =	Finitely Complete Categories
and Π	Locally Cartesian Closed Categories
\dots and $0, +$, Prop, Axioms	Elementary Topos
Simply Typed Lambda Calculus	Cartesian Closed Categories
Multiplicative Intuitionistic Linear Logic	Monoidal Closed Categories
Classical Linear Logic	*-Autonomous Categories
This Type Theory	LCCC + Monoidal Closed

Multiplicative Intuitionistic Linear Logic

$$x:A\vdash x:A$$

$$\begin{array}{ll} \Gamma \vdash a : A & \Gamma' \vdash b : B \\ \hline \Gamma, \Gamma' \vdash (a \otimes b) : A \otimes B \end{array} & \begin{array}{l} \Gamma \restriction p : A \otimes B \\ \hline \Gamma, x : A, y : B \vdash c : C \\ \hline \Gamma, \Gamma' \vdash \operatorname{let} (x \otimes y) = p \operatorname{in} c : C \end{array} \\ \hline \begin{array}{l} \hline \Gamma, x : A \vdash b : B \\ \hline \Gamma \vdash \partial x.b : A \multimap B \end{array} & \begin{array}{l} \hline \Gamma \vdash f : A \multimap B & \Gamma' \vdash a : A \\ \hline \Gamma, \Gamma' \vdash f(a) : B \end{array} \end{array}$$

 $\begin{array}{l} {\sf Proposition} \\ {\sf sym}: A \otimes B \multimap B \otimes A \end{array}$

Proof.

Suppose $p: A \otimes B$. Then splitting allows us to assume $p \equiv (x \otimes y)$, and we then have $(y \otimes x)$.

$$\mathsf{sym} :\equiv \partial p.\mathsf{let} \ (x \otimes y) = p \mathsf{in} \ (y \otimes x)$$

We cannot define $\Delta : A \multimap A \otimes A$.

After assuming x : A, the term $x \otimes x : A \otimes A$ is not well-formed: only one side of the \otimes is permitted to use x.

We cannot define $\pi_1 : A \otimes B \multimap A$.

After assuming $p: A \otimes B$ and using splitting to obtain x: Aand y: B, we cannot conclude x: A, because y: B is unused.

- Each type A is interpreted as an object $\llbracket A \rrbracket$
- ► Each term $x_1 : A_1, \ldots x_n : A_n \vdash b : B$ is interpreted as a morphism

$$\llbracket b \rrbracket : \llbracket A_1 \rrbracket \otimes \cdots \otimes \llbracket A_n \rrbracket \to \llbracket B \rrbracket$$

Curry-Howard-Lambek Correspondence

Type Theory	Categorical Structure
Simply Typed Lambda Calculus	Cartesian Closed Categories
Dependent Type Theory with 1, Σ and Extensional =	Finitely Complete Categories
and Π	Locally Cartesian Closed Categories
\dots and $0, +$, Prop, Axioms	Elementary Topos
Simply Typed Lambda Calculus	Cartesian Closed Categories
Multiplicative Intuitionistic Linear Logic	Monoidal Closed Categories
Classical Linear Logic	*-Autonomous Categories
This Type Theory	LCCC + Monoidal Closed

Our Setting

Our goal was to use type theory to reason about 'spectra', in the sense of stable homotopy theory.

These form a symmetric monoidal closed ∞ -category (Spec, $\mathbb{S}, \otimes, -\infty$).

Think of the 1-category $(Set_{\bullet}, Bool, \wedge, \rightarrow_{\bullet})$.

These are models of linear logic.

Families

Definition

If \mathcal{C} is a category, the category $P\mathcal{C}$ of parameterised families of \mathcal{C} has

- Objects given by $(X, \{E_x\}_{x \in X})$ where X is a set and E_x is an object of C for each $x \in X$.
- ▶ Morphisms $(X, \{E_x\}) \to (Y, \{F_y\})$ given by a pair $(f, \{f_x\})$ where $f : X \to Y$ is a function and $f_x : E_x \to F_{f(x)}$ is a morphism of \mathcal{C} for every $x \in X$.

Families

If C is monoidal closed, then PC is monoidal closed with the 'external monoidal product' $\overline{\otimes}$.

In favourable conditions, PC is also locally cartesian closed. (For example, when C is LCCC, but in some other unexpected cases too)

Linearity and Dependency

Linearity + dependency has been done before, but:

- Indexed type theories (Vákár 2014; Krishnaswami, Pradic, and Benton 2015; Isaev 2021) have semantics in indexed monoidal categories,
- Quantitative type theories (McBride 2016; Atkey 2018; Moon, Eades III, and Orchard 2021; Fu, Kishida, and Selinger 2020) have restricted dependency for Σ and Π,
- Existing dependent 'bunched' type theories (Schöpp 2006; Schöpp and Stark 2004; Cheney 2009; Cheney 2012) require I = 1.

Type Theory

The Symmetry Proof We Want

Proposition

 $\mathsf{sym}:A\otimes B\simeq B\otimes A$

Proof.

To define sym : $A \otimes B \to B \otimes A$, suppose we have $p : A \otimes B$. Then \otimes -induction allows us to assume $p \equiv x \otimes y$, and we have $y \otimes x$.

sym :
$$\equiv \lambda p$$
.let $x \otimes y = p \text{ in } y \otimes x$

Then to prove $\prod_{(p:A\otimes B)} \mathsf{sym}(\mathsf{sym}(p)) = p$, use \otimes -induction again: the goal reduces to $x \otimes y = x \otimes y$ for which we have reflexivity.

inv :=
$$\lambda p$$
.let $x \otimes y = p$ in refl $_{x \otimes y}$

Colourful Variables

We need to prevent terms like $\lambda x.x \otimes x : A \to A \otimes A$, so variable use needs to be restricted somehow.

Every variable x has a colour \mathfrak{c} .

• The relationships between colours are collected in a *palette*. Palettes Φ are constructed by

1 $\Phi_1 \otimes \Phi_2$ Φ_1, Φ_2 \mathfrak{c} $\mathfrak{c} \prec \Phi$

Typical palettes:

 $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$ $\mathfrak{w} \prec (\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}) \otimes \mathfrak{y}$ $\mathfrak{p} \prec (\mathfrak{r} \otimes \mathfrak{b}, \mathfrak{r}' \otimes \mathfrak{b}')$

(Similar to 'bunched' type theory P. W. O'Hearn and Pym 1999; P. O'Hearn 2003)

Using Colourful Variables

Building a term, we need to keep track of the current 'top colour'. Suppose the palette is $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$, and we have variables

 $x^{\mathfrak{r}}: A, y^{\mathfrak{b}}: B, z^{\mathfrak{p}}: C.$

- ▶ The top colour here is **p**.
- The only variable that can be used currently is z : C. (Using x here would correspond to a projection from one side of a tensor.)
- Ordinary type formers bind variables with the current top colour:

 $(x:A) \times B(x)$ $(x:A) \to B(x)$ $(\lambda x.b)$

• The rules for \otimes will grant us access to the other variables.

Say the top colour is \mathfrak{p} .

- ▶ Formation: For any closed (for now) types A and B we can form the type $A \otimes B$.
- ▶ Introduction: Whenever we can split \mathfrak{p} into two colours red and blue, use red to prove a and blue variables to prove b, then we have $a \otimes b : A \otimes B$.
- ▶ Elimination: If something holds for a generic tensor pair $x \otimes y$, then it holds for any particular $p : A \otimes B$.

Eg: Symmetry

Proposition

There is a function sym : $A \otimes B \to B \otimes A$

Proof.

Suppose have $p: A \otimes B$. Then \otimes -induction on p gives $x^{\mathfrak{r}}: A$ and $y^{\mathfrak{b}}: B$, where $\mathfrak{p} \prec \mathfrak{r} \otimes \mathfrak{b}$.

Split \mathfrak{p} into \mathfrak{b} and \mathfrak{r} . Then we can form $y_{\mathfrak{b}} \otimes_{\mathfrak{r}} \mathfrak{x} : B \otimes A$.

$$\mathsf{sym} :\equiv \lambda p.\mathsf{let} \ x_{\mathbf{r}} \otimes_{\mathbf{b}} y = p \mathsf{in} \ y_{\mathbf{b}} \otimes_{\mathbf{r}} x$$

Non-Eg: Colour Clashes

• We cannot define $\Delta : A \to A \otimes A$ in general.

Given a: A, forming $a \otimes a: A \otimes A$ is not allowed: the two inputs to \otimes -intro are not well-formed in separate pieces of the palette.

• We cannot define $e: (A \otimes (A \to B)) \to B$ in general.

We can destruct a term of $A \otimes (A \to B)$ into x : A and $f : A \to B$, but f(x) is not well formed: neither variable has the top colour, so can't be used.

Once we have access to a variable, we can use it however we like:

 $\lambda p.\mathsf{let} \ \mathbf{x} \otimes \mathbf{y} = p \mathsf{in} \ (\mathbf{x}, \mathbf{x}) \otimes \mathbf{y} : A \otimes B \to (A \times A) \otimes B$

▶ Using \otimes -elimination does not 'consume' the variable being inspected. If $f : C \otimes C \rightarrow \mathbb{N}$ we can do:

 $\lambda p. \mathsf{let} \ \mathbf{z} \otimes \mathbf{w} = p \mathsf{ in } f(p) + f(\mathbf{w} \otimes \mathbf{z}) : C \otimes C \to \mathbb{N}$

Hom

$\frac{\Gamma \times A \vdash B}{\Gamma \vdash A \to B}$

$\frac{\Gamma \otimes A \vdash B}{\Gamma \vdash A \multimap B}$

Hom

$$\frac{\Gamma \times (x:A) \vdash b:B}{\Gamma \vdash \lambda x.b: (x:A) \to B}$$

 $\frac{\Gamma \otimes (y:A) \vdash b:B}{\overline{\Gamma \vdash \partial y.b: (y:A) \multimap B}}$

For every type A there is a type atural A that deletes the C information.

Solved by using 'marked variables' $\underline{x} : A$, a second way of using variables.

This lets us add dependency to \otimes : we can form

- ▶ If A and B are types where all free variables in A and B are marked, then we can form $A \otimes B$.
- Additionally, B can be allowed to use a variable x : A marked, and we can form $(\underline{x} : A) \otimes B$.

(A 'sublocal monoidal closed structure', in the language of Fu, Kishida, and Selinger 2020.)

Conclusion

- The dependency of Σ, = and Π are exactly as in ordinary dependent type theory.
- The dependency of \otimes and \neg is mediated by \natural .
- ► The two worlds coexist, giving a very expressive type theory!

Thanks!

References I

Robert Atkey (2018). "Syntax and Semantics of Quantitative Type Theory". In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. DOI: 10.1145/3209108.3209189.

- James Cheney (2009). "A Simple Nominal Type Theory". In: Proceedings of the International Workshop on Logical Frameworks and Metalanguages: Theory and Practice (LFMTP 2008). Vol. 228. DOI: 10.1016/j.entcs.2008.12.115.
- (2012). "A dependent nominal type theory". In: Logical Methods in Computer Science 8.1. DOI: 10.2168/LMCS-8(1:8)2012.
- Peng Fu, Kohei Kishida, and Peter Selinger (2020). "Linear Dependent Type Theory for Quantum Programming Languages: Extended Abstract". In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. DOI: 10.1145/3373718.3394765.

References II

Valery Isaev (2021). "Indexed type theories". In: Mathematical Structures in Computer Science 31.1. DOI: 10.1017/S0960129520000092.

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton (2015). "Integrating Linear and Dependent Types". In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. DOI: 10.1145/2676726.2676969. Conor McBride (2016). "I Got Plenty o' Nuttin". In: A list of successes that can change the world. Vol. 9600. DOI: 10.1007/978-3-319-30936-1_12. Benjamin Moon, Harley Eades III, and Dominic Orchard (2021). "Graded Modal Dependent Type Theory". In: *Programming* Languages and Systems. DOI: 10.1007/978-3-030-72019-3_17. Peter O'Hearn (2003). "On bunched typing". In: Journal of Functional Programming 13.4. DOI: 10.1017/S0956796802004495. Peter W. O'Hearn and David J. Pym (1999). "The Logic of Bunched Implications". In: Bulletin of Symbolic Logic 5.2. DOI: 10.2307/421090.

Ulrich Schöpp (2006). "Names and Binding in Type Theory". PhD thesis. University of Edinburgh. URL: https: //ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561934.
Ulrich Schöpp and Ian Stark (2004). "A Dependent Type Theory with Names and Binding". In: Computer Science Logic. Vol. 3210. DOI: 10.1007/978-3-540-30124-0_20.
Matthjis Vákár (2014). Syntax and Semantics of Linear Dependent Types. arXiv: 1405.0033 [cs.AT].